Math, asked by The2mysteriious1soul, 1 year ago

hey! frnds solve this

Attachments:

siddhartharao77: What i the value in the denominator if (1) -root 23 - root 78 (or) root 75?

Answers

Answered by siddhartharao77
4
(1)

Given :  \frac{ \sqrt{7} }{ \sqrt{23} -   \sqrt{78} }

= \ \textgreater \   \frac{ \sqrt{7} }{ \sqrt{23} -  \sqrt{78}  } *  \frac{ \sqrt{23} +    \sqrt{78}  }{ \sqrt{23} +  \sqrt{78}  }

= \ \textgreater \   \frac{ \sqrt{7}( \sqrt{23} +  \sqrt{78})   }{ \sqrt{23} -  \sqrt{78}  }

= \ \textgreater \   \frac{ \sqrt{7}( \sqrt{23} +  \sqrt{78})   }{( \sqrt{23})^2 - ( \sqrt{78})^2  }

= \ \textgreater \   \frac{ \sqrt{7}( \sqrt{23} +  \sqrt{78})   }{23 - 78}

= \ \textgreater \   \frac{ \sqrt{7}( \sqrt{23} +  \sqrt{78} )  }{-55}



(2)

= \ \textgreater \   \frac{41 +  \sqrt{7} }{ \sqrt{9} - 3 }

= \ \textgreater \   \frac{41 +  \sqrt{7} }{3 - 3}

= \ \textgreater \   \frac{41 +  \sqrt{7} }{0}

Undefined.



(3)

Given :  \frac{ \sqrt{6} -  \sqrt{25}  }{ \sqrt{6} - 2 \sqrt{4}  }

= \ \textgreater \   \frac{ \sqrt{6} - 5 }{ \sqrt{6} - 4 } *  \frac{ \sqrt{6} + 4 }{ \sqrt{6} + 4 }

= \ \textgreater \   \frac{( \sqrt{6} - 5)( \sqrt{6} + 4)  }{( \sqrt{6} - 4)( \sqrt{6} + 4) }

= \ \textgreater \   \frac{-14 -  \sqrt{6} }{-10}

= \ \textgreater \   \frac{14 +  \sqrt{6} }{10}



Hope this helps!

The2mysteriious1soul: i don't know
The2mysteriious1soul: sorry
siddhartharao77: No problem sis.Dont say sorry!
The2mysteriious1soul: i disturbed u unnecessarily
The2mysteriious1soul: thanku
The2mysteriious1soul: bhaiya
siddhartharao77: Welcome sis :-)
Anonymous: :-)
cuteGmail: can you please help me with my sum Siddharth
siddhartharao77: ok
Answered by Anonymous
3
Hey Mate !

Here is your solution :

1.

= √7 ÷ ( √23 - √78 )

Multiplying in numerator and denominator by ( √23 + √78 ).

= [ √7 ( √23 + √78 ) ] ÷ [ ( √23 - √78 ) ( √23 + √78 ) ]

Using identity :

[ ( a + b ) ( a - b ) = a² - b² ]

= [ √7 ( √23 + √78 ) ] ÷ [ ( √23 )² - ( √78 )² ]

= √7 ( √23 + √78) ÷ ( 23 - 78 )

= √7 ( √23 + √78 ) ÷ ( -55 )

= - √7 ( √23 + √78 ) / 55

2.

= ( 47 + √7 ) ÷ ( √9 - 3 )

= ( 47 + √7 ) ÷ ( ±3 - 3 )

When +3,

= ( 47 + √7 ) ÷ ( 3 - 3 )

= ( 47 + √7 ) ÷ 0

Not defined.

When, -3,

= ( 47 + √7 ) ÷ ( -3 - 3 )

= ( 47 + √7 ) ÷ ( -6 )

= - ( 47 + √7 ) / 6

3.

= ( √6 - √25 ) ÷ ( √6 - 2 √4 )

= ( √6 - 5 ) ÷ ( √6 - 4 )

By multiplying in numerator and denominator by ( √6 + 4 ),

=[ ( √6 - 5 ) ( √6 + 4 ) ] ÷ [ ( √6 - 4 ) ( √6 + 4 ) ]

Using identity :

( a + b ) ( a - b ) = ( a² - b² )

= [ √6 × √6 + 4 √6 - 5 √6 - 20 ] ÷ [ ( √6 )² - ( 4 )² ]

= ( 6 - √6 - 20 ) ÷ ( 6 - 16 )

= ( - √6 - 14 ) ÷ ( - 10 )

= - ( √6 + 14 ) ÷ ( -10 )

= ( √6 + 14 ) / 10

==============================

Hope it helps !! ^_^

siddhartharao77: :-)
The2mysteriious1soul: thank you
Anonymous: ur wlcm
The2mysteriious1soul: hey
The2mysteriious1soul: i asked a question nowol
The2mysteriious1soul: ans iy
The2mysteriious1soul: it
Anonymous: okay
The2mysteriious1soul: plz
Similar questions