Math, asked by Anonymous, 7 months ago

HEY GENIUS...MATHS ARYABHATT....ENGLISH SHAKESPEARE....CHEMISTRY LAVOISIER...SOLVE MY QUESTIONS....​

Attachments:

Answers

Answered by shadowsabers03
8

We know the binomial approximation theorem,

\longrightarrow(1+x)^n=1+nx,\quad|x|<<1

So we have,

\longrightarrow(1+0.000001)^{1000000}=1+0.000001\times1000000

\longrightarrow(1+0.000001)^{1000000}=1+1

\longrightarrow(1+0.000001)^{1000000}=2\quad\quad\dots(1)

We're asked to evaluate,

\displaystyle\longrightarrow L=\lim_{n\to\infty}\left((1.6)^n+\left[(1+0.000001)^{1000000}\right]^n\right)^{\frac{1}{n}}

From (1),

\displaystyle\longrightarrow L=\lim_{n\to\infty}\left((1.6)^n+\left[2\right]^n\right)^{\frac{1}{n}}

\displaystyle\longrightarrow L=\lim_{n\to\infty}\left((1.6)^n+2^n\right)^{\frac{1}{n}}

\displaystyle\longrightarrow L=\lim_{n\to\infty}\left(2^n+(1.6)^n\right)^{\frac{1}{n}}

\displaystyle\longrightarrow L=\lim_{n\to\infty}\left(2^n+\dfrac{(1.6)^n}{2^n}\cdot2^n\right)^{\frac{1}{n}}

\displaystyle\longrightarrow L=\lim_{n\to\infty}\left(2^n+\left(\dfrac{1.6}{2}\right)^n\cdot2^n\right)^{\frac{1}{n}}

\displaystyle\longrightarrow L=\lim_{n\to\infty}\left(2^n+\left(0.8\right)^n\cdot2^n\right)^{\frac{1}{n}}

Taking 2^n common,

\displaystyle\longrightarrow L=\lim_{n\to\infty}\left(2^n\left(1+\left(0.8\right)^n\right)\right)^{\frac{1}{n}}

\displaystyle\longrightarrow L=\lim_{n\to\infty}(2^n)^{\frac{1}{n}}\left(1+\left(0.8\right)^n\right)^{\frac{1}{n}}

\displaystyle\longrightarrow L=\lim_{n\to\infty}2\left(1+\left(0.8\right)^n\right)^{\frac{1}{n}}

\displaystyle\longrightarrow L=2\lim_{n\to\infty}\left(1+\left(0.8\right)^n\right)^{\frac{1}{n}}

Since 0.8<1,\ (0.8)^n\to0 as n\to\infty.

And \dfrac{1}{n}\to0 as n\to\infty.

Therefore,

\displaystyle\longrightarrow L=2\left(1+0\right)^{\frac{1}{\infty}}

\displaystyle\longrightarrow L=2\left(1\right)^{0}

\displaystyle\longrightarrow\underline{\underline{L=2}}

Hence 2 is the answer.

Similar questions