Math, asked by salonirawat106, 1 month ago

hey give me appropriate answer otherwise stay away with this question​

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{\left\{\dfrac{1+cos\left(\dfrac{\pi}{8}\right)+i\,sin\left(\dfrac{\pi}{8}\right)}{1+cos\left(\dfrac{\pi}{8}\right)-i\,sin\left(\dfrac{\pi}{8}\right)}\right\}^8}

\sf{=\left\{\dfrac{2\,cos^2\left(\dfrac{\pi}{16}\right)+2\,i\,sin\left(\dfrac{\pi}{16}\right)\,cos\left(\dfrac{\pi}{16}\right)}{2\,cos^2\left(\dfrac{\pi}{16}\right)-2\,i\,sin\left(\dfrac{\pi}{16}\right)\,cos\left(\dfrac{\pi}{16}\right)}\right\}^8}

\sf{=\left[\dfrac{2\,cos\left(\dfrac{\pi}{16}\right)\left\{cos\left(\dfrac{\pi}{16}\right)+i\,sin\left(\dfrac{\pi}{16}\right)\right\}}{2\,cos\left(\dfrac{\pi}{16}\right)\left\{cos\left(\dfrac{\pi}{16}\right)-i\,sin\left(\dfrac{\pi}{16}\right)\right\}}\right]^8}

\sf{=\left[\dfrac{cos\left(\dfrac{\pi}{16}\right)+i\,sin\left(\dfrac{\pi}{16}\right)}{cos\left(\dfrac{\pi}{16}\right)-i\,sin\left(\dfrac{\pi}{16}\right)}\right]^8}

\sf{=\left[\dfrac{cos\left(\dfrac{\pi}{16}\right)+i\,sin\left(\dfrac{\pi}{16}\right)}{cos\left(-\dfrac{\pi}{16}\right)+i\,sin\left(-\dfrac{\pi}{16}\right)}\right]^8}

\sf{=\left[\dfrac{e^{\frac{i\,\pi}{16}}}{e^{\frac{-i\,\pi}{16}}}\right]^8}

\sf{=\left[e^{\frac{i\,\pi}{16}+\frac{i\,\pi}{16}}\right]^8}

\sf{=\left[e^{\frac{i\,2\pi}{16}}\right]^8}

\sf{=\left[e^{\frac{i\,\pi}{8}}\right]^8}

\sf{=e^{i\,\pi}}

\sf{=-1}

Answered by mathdude500
6

Given Question :-

 \sf \:  {\bigg[\dfrac{1 + cos\bigg(\dfrac{\pi}{8} \bigg)  + isin\bigg(\dfrac{\pi}{8} \bigg) \: }{1 + cos\bigg(\dfrac{\pi}{8} \bigg) - i \: sin\bigg(\dfrac{\pi}{8} \bigg)} \bigg]}^{8}  =  -  -  -  -

 \green{\large\underline{\sf{Solution-}}}

Given complex number is

\rm :\longmapsto\: \sf \:  {\bigg[\dfrac{1 + cos\bigg(\dfrac{\pi}{8} \bigg)  + isin\bigg(\dfrac{\pi}{8} \bigg) \: }{1 + cos\bigg(\dfrac{\pi}{8} \bigg) - i \: sin\bigg(\dfrac{\pi}{8} \bigg)} \bigg]}^{8}

We know,

 \\ \boxed{ \tt{ \: 1 + cos2x =  {2cos}^{2}x \: }} \\  \\ \boxed{ \tt{ \: sin2x = 2sinx \: cosx \: }} \\

So, using this, we get

\rm \:  =  \:{ \bigg\{\dfrac{2 {cos}^{2} \bigg(\dfrac{\pi}{16} \bigg)+ i \: 2sin\bigg(\dfrac{\pi}{16} \bigg)cos\bigg(\dfrac{\pi}{16} \bigg)}{2 {cos}^{2}\bigg(\dfrac{\pi}{16} \bigg) -  i \: 2sin\bigg(\dfrac{\pi}{16} \bigg)cos\bigg(\dfrac{\pi}{16} \bigg)}  \bigg\}}^{8}

\rm \:  =  \:{ \bigg\{\dfrac{2 {cos}^{} \bigg(\dfrac{\pi}{16} \bigg)\bigg[cos\bigg(\dfrac{\pi}{16} \bigg)+ i \: sin\bigg(\dfrac{\pi}{16} \bigg)\bigg]}{2 {cos}^{}\bigg(\dfrac{\pi}{16} \bigg)\bigg[cos\bigg(\dfrac{\pi}{16} \bigg) -  i \: sin\bigg(\dfrac{\pi}{16} \bigg)\bigg]}  \bigg\}}^{8}

\rm \:  =  \:{ \bigg\{\dfrac{\bigg[cos\bigg(\dfrac{\pi}{16} \bigg)+ i \: sin\bigg(\dfrac{\pi}{16} \bigg)\bigg]}{\bigg[cos\bigg(\dfrac{\pi}{16} \bigg) -  i \: sin\bigg(\dfrac{\pi}{16} \bigg)\bigg]} \bigg\}}^{8}

We know,

By Eulers Formula

\boxed{ \tt{ \: cosx + i \: sinx =  {e}^{ix}  \: }} \\  \\ \boxed{ \tt{ \: cosx - i \: sinx =  {e}^{ -  \: ix}  \: }} \\

So, using these Identities, we get

\rm \:  =  \:  {\bigg[\dfrac{ {e}^{i\dfrac{\pi}{16} } }{{e}^{ -  \: i\dfrac{\pi}{16} }} \bigg]}^{8}

\rm \:  =  \:  {\bigg[{e}^{i\dfrac{\pi}{16} + i\dfrac{\pi}{16}  }\bigg]}^{8}

\rm \:  =  \:  {\bigg[{e}^{i\dfrac{\pi}{8}}\bigg]}^{8}

\rm \:  =  \:  {e}^{i \: \pi}

\rm \:  =  \: cos\pi \:  +  \: i \:sin \pi

\rm \:  =  \:  - 1 + 0i

\rm \:  =  \:  - 1

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \:  \sf \:  {\bigg[\dfrac{1 + cos\bigg(\dfrac{\pi}{8} \bigg)  + isin\bigg(\dfrac{\pi}{8} \bigg) \: }{1 + cos\bigg(\dfrac{\pi}{8} \bigg) - i \: sin\bigg(\dfrac{\pi}{8} \bigg)} \bigg]}^{8} =  - 1 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\boxed{ \tt{ \:  {(cosx + i \: sinx)}^{n}  = cos \: nx + i \: sin \: nx \: }}

\boxed{ \tt{ \:  {(cosx + i \: sinx)}^{ - n}  = cos \: nx  -  i \: sin \: nx \: }}

\boxed{ \tt{ \:  \frac{1}{cosx - i \: sinx}  = cosx + i \: sinx \: }}

Similar questions