Math, asked by MyNameIsJeffXD, 10 months ago


HEY GUYE!! GOOD EVENING!!
Prove that (sin A + cosec A)' +(cos A + sec A)' = 7+tan' A+ cot' A.​​

Answers

Answered by radha2216
3

Step-by-step explanation:

Hey guys here your answer

Attachments:
Answered by SarcasticL0ve
5

Correct question:-

  •  \sf{( \sin{A} + \cosec{A})^2 + ( \cos{A} + \sec{A})^2 = 7 + \tan^2{A} + \cot^2{A}}

Solution:-

Identity used:-

\bold{\underline{\boxed{\sf{\purple{\dag \; 1 + \tan^2{A} = \sec^2{A}}}}}}

\bold{\underline{\boxed{\sf{\purple{\dag \; 1 + \cot^2{A} = \cosec^2{A}}}}}}

\bold{\underline{\boxed{\sf{\purple{\dag \; \sin^2{A} + \cos^2{A} = 1}}}}}

We know that,

 \sf{ \cosec{A} = \dfrac{1}{ \sin{A}}}

and

 \sf{ \sec{A} = \dfrac{1}{ \cos{A}}}

 \sf{( \sin{A} + \cosec{A})^2 + ( \cos{A} + \sec{A})^2 = 7 + \tan^2{A} + \cot^2{A}}

Taking R.H.S :-

\implies \sf{( \sin{A} + \cosec{A})^2 + ( \cos{A} + \sec{A})^2}

\implies \sf{ \sin^2{A} + \cosec^2{A} + 2 \sin{A} \cosec{A} +  \cos^2{A} + \sec^2{A} + 2 \cos{A} \sec{A}}

\implies \sf{ \sin^2{A} + \cosec^2{A} + 2 \cancel{\sin{A}} \times \dfrac{1}{ \cancel{ \sin{A}}} +  \cos^2{A} + \sec^2{A} + 2 \cos{A} \times \dfrac{1}{ \cancel{ \cos{A}}}}

\implies \sf{ \sin^2{A} + \cos^2{A} + \cosec^2{A} + \sec^2{A} + 2 + 2}

\implies \sf{1 + \cosec^2{A} + \sec^2{A} + 2 + 2}

\implies \sf{5 + (1 + \cot^2{A}) + (1 + \tan^2{A})}

\implies \sf{7 + \tan^2{A} + \cot^2{A}}

\rule{200}{2}

Similar questions
Math, 1 year ago