Math, asked by 27jenny, 1 year ago

HEY GUYS....
BACK WITH ANOTHER QUESTION-----

16. Sum of n term of the series 0.1 + 0.11 + 0.111 + ..... is -----


17. The sum of the first 20 terms of a G.P. is 245 times the sum of its first 10 terms . The common ratio is --


PLZ ANSWER IT .....

Attachments:

Answers

Answered by Anonymous
200

\underline{\mathfrak{Solution : }}


\underline{\mathsf{Q.no \: 16 }}


 \mathsf{ =  0.1 \:  +  \: 0.11 \:  +  \: 0.111 \:  +  \: ...... \: n \: terms} \\  \\  \mathsf{ = 0.1(1 \:  +  \: 1.1 \:  +  \: 1.11 \:  +  \: ...... \: n \: terms)}

\mathsf{Multiply \: the \: numerator\: and \: denominator \: by \: 9, }


 \mathsf{ =  \dfrac{1}{10 \times 9}(1 \:  +  \: 1.1 \:  +  \: 1.11 \: ...... \: n \: terms )9} \\  \\  \\  \mathsf{ =  \dfrac{1}{90}(9 \:  +  \: 9.9 \:  +  \: 9.99 ......  \: n \: terms)} \\  \\  \\  \mathsf{ =  \dfrac{1}{90} [(10 \: - \:1) \: + \: ( 10 \: - \: 0.1) \: + \: ( 10 \: - \: 0.01) ...... \: n \: terms]}


 \\  \mathsf{ =  \dfrac{1}{90}[10n \: - \:( 1 \: + \: 0.1 \: + \: 0.01...... \: n \: terms)]}



\mathsf{Now, \: for \: the \: G.P. \: part, } \\ \\<br /><br />\mathsf{\implies First \: term (a)\: = \: 1 } \\ \\<br /><br />\mathsf{\implies Common \: ratio (r) \: = \: \dfrac{0.1}{1} \: = \: 0.1 \: }<br />




\mathsf{Since, \: r  \:  &lt;  \: 1} \\  \\ \mathsf{So, \: sum \: of \: n \: terms \: = \: \dfrac{a(1 \: - \: {r}^{n})}{(1 \: - \: r )}}<br />  \\  \\   \\ \mathsf{ \qquad  \qquad \qquad \qquad  \:  = \:  \dfrac{1[1 \: - \: {(0.1)}^{n}] }{(1 \:  -  \: 0.1)} } \\  \\  \\   \mathsf{\qquad \qquad \qquad \qquad \:  =  \:  \dfrac{(1 \:  -  \:  {(0.1 )}^{n} ) }{0.9}}



\underline{\mathsf{Now,}}



 \mathsf{ =  \:  \dfrac{1}{90}[10n \: - \: \dfrac{1 \: - \: ({0.1})^{n}}{0.9}]} \\  \\   \\ \mathsf{ =  \:  \dfrac{1}{90} \:  \times  \: \dfrac{[10n \: \times \: 0.9 \: - ( 1 \: - \: (0.1)^{n})]}{0.9}}


\\  \mathsf{= \: \dfrac{1}{90} \: \times \: \dfrac{[10n \: \times \: 0.9 \: - \:( 1 \: - \: (0.1)^{n}] }{\dfrac{9}{10}}}



 \\ \mathsf{= \: \dfrac{1 0}{90} \: \times \: [\dfrac{ \cancel{10}n\: \times \: \dfrac{9}{  \cancel{10}} \: - \: ( 1 \: - \: (0.1)^{n})}{9}]}




 \\  \mathsf{= \: \dfrac{1}{9} \: \times \: [\dfrac{9 \: - \: ( 1 \: - \: (0.1)^{n})}{9}]}<br />




\mathsf{= \: \dfrac{1}{9}\: \times \: [\dfrac{9}{9} \: - \:\dfrac{(1 \: - \: (0.1)^{n})}{9}]}



\mathsf{= \: \dfrac{1}{9}[1 \: - \:(1 \: - \:(0.1)^{n})/9]}



\boxed{\underline{\mathsf{The \: required \: answer \: is \: (b).}}}




\underline{\mathsf{Q. no \: 17 }}



\mathsf{We \: know \: that,}


 \\ \mathsf{\implies Sum \: of \: n \: terms \: = \: \dfrac{a(r^{n} \: - \: 1)}{(r\: - \: 1)}}<br />


\mathsf{Let,} \\ \\<br /><br />\mathsf{\implies First \: term \: = \:a } \\ \\<br /><br />\mathsf{\implies Common \: difference \: = \: d }



\mathsf{According \: to \: the \: question, } \\ \\<br /> \\ <br />\mathsf{\implies S_{20} \: = \: 244 \: \times \: S_{10}} \\  \\  \\  \mathsf{ \implies  \dfrac{ \cancel{a}( r^{20 } \:  -  \: 1 )}{ \cancel{(r \:  -  \: 1)}} \:  =  \: 244 \:  \times \:  \dfrac{ \cancel{a}( {r}^{10}  \:  -  \: 1)}{ \cancel{(r \:  -  \: 1)}}}



 \\ <br />\mathsf{\implies (r^{20} \: - \: 1) \: = \: 244 \: \times \: (r^{10} \: - \: 1)} \\ \\ \\<br /><br />\mathsf{\implies \dfrac{(r^{20} \: - \:1)}{(r^{10} \: - \: 1)} \: = \: 244}



 \\ \mathsf{\implies \dfrac{[(r^{10})^{2} \: - \: ({1})^{2}]}{(r^{10} \: - \: 1)} \: = \: 244 }





 \\ <br />\mathsf{Using \: Algebraic \: identity,} \\ \\ \\<br /><br />\boxed{\mathsf{\implies (a)^{2} \: - \: (b)^{2} \: = \: (a \: + \: b )(a \: - \: b}}



\\  \mathsf{\implies \dfrac{(r^{10} \: + \: 1)\cancel{(r^{10} \: - \: 1) }}{\cancel{(r^{10} \: - \: 1)} }\: = \: 244 } \\ \\ \\<br />   \mathsf{ \implies  {r}^{10}  \:  +  \: 1 \:  =  \: 244}




 \\ \mathsf{\implies r^{10} \: = \: 244 \: - \: 1} \\ \\ <br /><br />\mathsf{\implies r^{10} \: = \: 243} \\ \\ <br /><br />\mathsf{\implies r^{10} \: = \: 3^{5}} \\ \\  \mathsf{ \implies  {r}^{   \normalsize{\frac{10}{5}} } \:  =  \: 3}<br /> \\  \\  \mathsf{ \implies  {r}^{2}  \:  =  \: 3} \\  \\  \mathsf{  \therefore \quad  r \:  =  \:  \pm \sqrt{3}}<br />



\boxed{\underline{\mathsf{The \: required \: answer \: is \: (a).}}}


Noah11: brilliant answer! :)
Answered by hamzaqureshijhc
0

Step-by-step explanation:

.. Ca Mohammad Hamza Qureshi

Mumbai

Attachments:
Similar questions