HEY GUYS enjoy (20 marks)...
Two different dice are tossed together . find the probability :
1. of getting a doublet .
2. of getting a sum 10 , of the numbers on the two dice .
Answers
Answered by
4
The respected answer is (1) 2 upon 12 is equal to 1 upon 6.may help you
Anonymous:
explain it
Answered by
78
Hey!
____
____________________________________________________________
★Probability ★
____________________________________________________________
=> The following outcomes are recorded when two dice are rolled together :
________________________________
( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 1 , 5 ) ( 1 , 6 )
( 2 ,1 ) ( 2 , 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 ,5 ) ( 2 ,6 )
( 3, 1 ) ( 3 ,2 ) ( 3, 3 ) ( 3,4 ) ( 3 , 5 ) ( 3 , 6 )
( 4 , 1 ) ( 4 ,2 ) ( 4, 3 ) ( 4, 4) ( 4,5 ) ( 4, 6)
( 5, 1 ) ( 5,2 ) (5, 3 ) (5, 4 ) ( 5 , 5 ) ( 5 , 6 )
(6, 1 ) ( 6, 2 ) ( 6, 3 ) ( 6, 4 ) ( 6, 5 ) ( 6 , 6 )
_________________________________
→ Probability = Favourable Conditions / Total Outcomes
→ Here , Total Outcomes = 6 × 6 = 36
1. Probability of Doublet
➡Favourable Outcome [ (1, 1 ) (2,2) ( 3 ,3) (4 ,4) (5 ,5) (6 ,6 ) => 6
•°• P ( Doublet) = 6 / 36
=> 1 / 6 ✔
_____________________
2. Probability of sum 10
➡ Favourable conditions = ( 4 , 6 ) (5 , 5 ) ( 6 ,4 ) => 3
•°• P ( Sum 10 ) = 3 / 36
=> 1 / 12 ✔
___________________________________________________________
____
____________________________________________________________
★Probability ★
____________________________________________________________
=> The following outcomes are recorded when two dice are rolled together :
________________________________
( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 1 , 5 ) ( 1 , 6 )
( 2 ,1 ) ( 2 , 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 ,5 ) ( 2 ,6 )
( 3, 1 ) ( 3 ,2 ) ( 3, 3 ) ( 3,4 ) ( 3 , 5 ) ( 3 , 6 )
( 4 , 1 ) ( 4 ,2 ) ( 4, 3 ) ( 4, 4) ( 4,5 ) ( 4, 6)
( 5, 1 ) ( 5,2 ) (5, 3 ) (5, 4 ) ( 5 , 5 ) ( 5 , 6 )
(6, 1 ) ( 6, 2 ) ( 6, 3 ) ( 6, 4 ) ( 6, 5 ) ( 6 , 6 )
_________________________________
→ Probability = Favourable Conditions / Total Outcomes
→ Here , Total Outcomes = 6 × 6 = 36
1. Probability of Doublet
➡Favourable Outcome [ (1, 1 ) (2,2) ( 3 ,3) (4 ,4) (5 ,5) (6 ,6 ) => 6
•°• P ( Doublet) = 6 / 36
=> 1 / 6 ✔
_____________________
2. Probability of sum 10
➡ Favourable conditions = ( 4 , 6 ) (5 , 5 ) ( 6 ,4 ) => 3
•°• P ( Sum 10 ) = 3 / 36
=> 1 / 12 ✔
___________________________________________________________
Similar questions