Math, asked by ansneeded, 2 months ago

Hey guys,

From the following cumulative frequency table, construct a frequency distribution table

No spams

Attachments:

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given data is

The cumulative frequency distribution table is

\begin{gathered} \begin{array}{|c|c|} \bf{Marks} & \bf{Number \: of \: students} \\ 0 \: and \: above & 40  \\10 \: and \: above & 28 \\20 \: and \: above & 16 \\30 \: and \: above & 10 \\40 \: and \: above & 8 \\ 50 \: and \: above  & 0 \end{array}\end{gathered}

The frequency distribution table is as follow :-

\begin{gathered} \begin{array}{|c|c|} \bf{Marks} & \bf{Number \: of \: students} \\ 0 - 10 & 12  \\10 - 20 & 12 \\20 - 30 & 6 \\30 - 40 & 2 \\40 - 50 & 8 \end{array}\end{gathered}

Additional Information.:-

Formula's

Mode :-

 \boxed{{\bf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}}

Mean using direct method :-

 \boxed{\bf Mean = \dfrac{ \sum f_i x_i}{ \sum f_i}}

Mean using Short Cut Method :-

 \boxed{\bf Mean = A + \dfrac{ \sum f_i d_i}{ \sum f_i}}

Mean using Step Deviation Method :-

 \boxed{\bf Mean = A + \dfrac{ \sum f_i u_i}{ \sum f_i} \times h}

Median :-

\boxed{\bf Median= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}}

Similar questions