hey guys help me
if u solve this question correctly i will mark brainliest answer
Answers
Answer:
Step-by-step explanation:
See... Its a lengthy question
In a rhombus, all sides are equal, and A.B,C,D are midpoints, hence,
WX/2=XY/2=YZ/2=WZ/2=ZC=CY=YB=BX.....
now,
∠AWD=180°-∠DZC since oppsoite angles are suplementary
Let ∠AWD be x, so ∠DZC=180°-x
Taking in mind sum of all angles in a triangle is 180,
in triangle AWD, AW=WD, so ∠DAW=∠ADW
∠ADW=(180°-x)/2
in traingle DZC, DZ=ZC, so ∠ZDC=∠ZCD
∠ZDC={180°-(180°-x)}/2=x/2
again,
in line WZ, ∠ZDC+∠CDA+∠ADW=180°
so, ∠CDA=180°- {(180°-x)/2} -x/2 = 90°..........(i)
now,
In △ZDC and △ABX,
ZD=AX [proved]
∠DZC=∠AXB [opposite angles in a rhombus are equal]
ZC=BX [proved]
Thus, both the triangles are congruent.
So, by c.p.c.t., CD=AB........(ii)
Similarly, in △AWD and △YBC, BC=AD.........(iii)
From (i), (ii) and (iii), we get that ABCD is a quad. in which opposite sides are equal and one of the angles is 90°,
Hence, ABCD is a rectangle (proved)