Math, asked by susrubijithasunil, 1 year ago

hey guys ,
help me with this question

Attachments:

Answers

Answered by kunal221922
4

using heron formula

we get

area 336

area of parallelogram 336

bh/2=336

28h/2=336

14h=336

h=24

Answered by Rudra0936
22

Answer:

  • Sides of the triangle given
  • 26cm,30cm,28cm

also \: given \:the \: triangle \: and \: parllalogram \: stand \: on \: common \: base (28cm)

 =  &gt; area \: </strong><strong>of</strong><strong> \: triangle \: is \:  = \: \: the \: area \: of \: parallalogram.......(given)

  • So let's find the area of the traingle

Sides = (28,30,26) cm

so Semiperimeter or s=

 \frac{28 + 26 + 30}{2}

 \frac{84}{2}

42

So area is =

 \sqrt{s(s - a)(s - b)(s - c)}

 \sqrt{42(42 - 30)(42 - 28)(42 - 2)}

 \sqrt{42 \times 12 \times 14 \times 16}

 \sqrt{3 \times 2 \times 7 \times 3 \times 2 \times 2 \times 7 \times 2 \times 2 \times 2 \times 2 \times 2}

3 \times 7 \times 2 \times 2 \times 2 \times 2

16 \times 21

346 cm²

A/Q, Area of traingle = Area of parallelogram

So area of parallelogram is = 346cm²

now \: area \: of \: parallalogram \:  = 346 \: cm^{2}

 \frac{1}{2}  \times common \: base \times height = 346

 \frac{1}{2}  \times 28 \times height = 346

14 \times height = 346

  • Height = 24.7cm
Attachments:
Similar questions