Math, asked by Anonymous, 1 year ago

Hey guys here is my question ☺️...
pls solve it ...

❎Don't spam❎

Attachments:

Answers

Answered by RabbitPanda
3
Heya....hope it helps

@skb♥️
Attachments:

Anonymous: i can't understand
Anonymous: how u get the polynomial
RabbitPanda: Hey wait i am rditing my answer
RabbitPanda: Editing*
RabbitPanda: Understood?
Anonymous: thnx sis ^_^
Anonymous: now i understand
RabbitPanda: Shukria g
Answered by siddhartharao77
7
Given f(x) = x^4 - 6x^3 + 16x^2 - 25x + 10.

Given g(x) = x^2 - 2x + k.

We need to divide p(x) by g(x).




x^2 - 2x + k) x^4   -    6x^3  +   16x^2   -  25x   +  10

                     x^4   -    2x^3   +   kx^2

                     -------------------------------------------------------

                                   -4x^3  +  (16 - k)x^2 - 25x + 10

                                   -4x^3  +  8x^2         -4kx

                       ---------------------------------------------------------

                                            8x^2 - kx^2 - 25x + 4kx + 10

                                            8x^2            - 16x             + 8k

                          ---------------------------------------------------------

                                                     -kx^2   -  9x  +  4kx  + 10 - 8k

                                                     -kx^2             +  2kx               -k^2

                            ----------------------------------------------------------------------

                                                                     -9x + 2kx + 10 - 8k + k^2


We got remainder as

= > -9x + 2kx + 10 - 8k + k^2

= > (2k - 9)x + k^2 - 8k + 10
                                                                
Given remainder is x + a.

 (2k - 9)x + k^2 - 8k + 10 = x + a.


Now,

(1) 2k - 9 = 1

    2k = 10

    k = 5.



(2) k^2 - 8k + 10 = a

     (5)^2 - 8(5) + 10 = a

     25 - 40 + 10 = a

     a = -5.




Therefore the value of a = -5, k = 5.



Hope this helps!

siddhartharao77: :-)
Anonymous: thnx bro^_^
siddhartharao77: Welcome!
Similar questions