Math, asked by bharthi783, 1 year ago

Hey Guys ❤️

Please answer the above problem.

No Spamming ✖️
Best of luck ❤️

Attachments:

Answers

Answered by Anonymous
11

\large{\mathfrak{\underline{\underline{Answer:-}}}}

Given:

 \sin( \alpha )  +  \sin( \beta )  +  \sin( \gamma )  -  \sin( \alpha  +  \beta  +  \gamma )

To Prove:

 = 4 \sin( \frac{ \alpha  +  \beta }{2} ) . \sin( \frac{ \beta  +  \gamma }{2} ). \sin( \frac{ \gamma  +  \alpha }{2} )

\large{\mathfrak{\underline{\underline{Explanation:-}}}}

L.H.S= ( \sin( \alpha )  +  \sin( \beta ) - ( \sin( \alpha  +  \beta  +  \gamma )  -  \sin  \gamma )

 = 2 \sin( \frac{ \alpha  +  \beta }{2} ) . \cos( \frac{ \alpha  -  \beta }{2} ) - 2 \cos( \frac{ \alpha  +  \beta  + 2 \gamma }{2} ) . \sin( \frac{ \alpha  +  \beta }{2} )

 = 2 \sin( \frac{ \alpha  +  \beta }{2} ) .( \cos( \frac{ \alpha  -  \beta }{2} )  -  \cos( \frac{ \alpha  +  \beta  + 2 \gamma }{2} ))

=2 \sin( \frac{ \alpha  +  \beta }{2} ) .(2. \sin( \frac{( \frac{ \alpha  -  \beta }{2} +  \frac{ \alpha  +  \beta + 2 \gamma  }{2} ) }{2} ) . \sin( \frac{ (\frac{ \alpha  +  \beta  + 2 \gamma }{2} +  \frac{ \alpha  -  \beta }{2})}{2} )

 = 2. \sin(  \frac{ \alpha  +  \beta }{2} ) (2. \sin( \frac{ \alpha  +  \gamma }{2} ). \sin( \frac{ \beta  +  \gamma }{2} ))

 = 4. \sin( \frac{ \alpha  +  \beta }{2} ) . \sin( \frac{ \beta  +  \gamma }{2} ) . \sin( \frac{  \gamma  +  \alpha }{2} )

\large{\mathfrak{\underline{\underline{Verification:-}}}}

 \sin( \alpha )  +  \sin( \beta )  +  \sin( \gamma )  -  \sin( \alpha  +  \beta  +  \gamma )  = 4 \sin( \frac{ \alpha  +  \beta }{2} ) . \sin( \frac{ \beta  +  \gamma }{2} ). \sin( \frac{ \gamma  +  \alpha }{2} )

\large{\boxed{\tt{Hence\;Proved!!}}}

Answered by Anonymous
8

pls refer to the attachment pls!

Attachments:
Similar questions