Math, asked by Anonymous, 10 months ago

Hey guys please answer the QuEStiON
It's urgent !!​

Attachments:

Answers

Answered by Anonymous
13

 \large\bf\underline{Question:-}

If the pair of linear equations 2x + 3y = 12 and (m+n)x + (2m-n)y = 21 have infinitely many solutions ,then find the value of m and n

options :-

A) m = 1 , n = 5

B) m = 5 , n = 1

C) m = -1 ,n = 5

D) m = 5, n = -1

━━━━━━━━━━━━━

 \large\bf\underline{Given:-}

pair of linear equations is given as

  • 2x + 3y = 12 and
  • (m+n)x + (2m-n)y = 21

 \large\bf\underline {To \: find:-}

  • value of m and n

 \huge\bf\underline{Solution:-}

Given pair of linear equations is:-

  • 2x +3y -7 = 0
  • (m + n)x +(2m - n)y - 21 = 0

The equations are of the form

 \rm \: a_1x+b_1y + c_1 = 0 \\  \rm \: and \: a_2x+b_2y + c_2 = 0

where,

  • a1 = 2 , a2 = (m+n)
  • b1 = 3 , b2 = (2m - n)
  • c1 = -7 ,c2 = -21

 \rm \therefore \:  \frac{a_1}{a_1}  =  \frac{2}{(m + n)}   \: , \:  \frac{b_1}{b_2} =  \frac{3}{(2m - n)} \: , \:  \frac{c_1}{c_2} =  \frac{ - 7}{( - 21)}

It is given that the equations have infinitely many solutions.

Then

 \rm \:  \frac{a_1}{a_2}  =  \frac{b_1}{b_2}  = \frac{c_1}{c_2}

  : \implies \rm \:  \frac{2}{(m + n)}  =  \frac{3}{(2m - n)}  =  \frac{ - 7}{ - 21}

1st case :-

when,

 \small: \implies \rm \:  \frac{2}{(m + n)}  =  \frac{3}{(2m - n)}  \: \\  \\  \small: \implies \rm \: 2(2m - n) = 3(m + n) \\  \\ \small: \implies \rm \: 4m - 2n = 3m + 3n \\  \\ \small: \implies \rm \: m - 5n = 0.......(i)

Case 2nd :-

when,

   \small: \implies \rm \:   \frac{3}{(2m - n)}  =  \frac{ - 7}{ - 21}  \\  \\  \small: \implies \rm \: \frac{3}{2m - n}  =  \frac{1}{3}  \\  \\  \small: \implies \rm \:9 = 2m - n \\  \\  \small: \implies \rm \:2m - n - 9 = 0..........(ii)

from eq. (i)

m = 5n .........(iii)

Substituting value of m in eq.(ii)

➝ 2m - n -9 = 0

➝ 2(5n) - n - 9 = 0

➝ 10n -n -9 = 0

➝ 9n = 9

➝ n = 9/9

n = 1

Substituting value of n in eq. (iii)

➝ m = 5n

m = 5

So, value of m = 5 and n = 1

Option B) is correct.

Similar questions