Hey guys, please help me prove this identity by making one side equal to the other.
Attachments:
Answers
Answered by
40
FORMULA TO BE IMPLEMENTED
TO PROVE
PROOF
Hence proved
Answered by
0
Answer:
=
cosθ
sinθ
(1−sinθ)
cosθ
= \displaystyle \: \frac{{cos}^{2} \theta \: }{sin\theta \:(1 - sin \: \theta )\:}=
sinθ(1−sinθ)
cos
2
θ
= \displaystyle \: \frac{1 - {sin}^{2} \theta \: }{sin\theta \:(1 - sin \: \theta )\:}=
sinθ(1−sinθ)
1−sin
2
θ
= \displaystyle \: \frac{(1 + sin \: \theta ) (1 - sin \: \theta )}{sin\theta \:(1 - sin \: \theta )\:}=
sinθ(1−sinθ)
(1+sinθ)(1−sinθ)
= \displaystyle \: \frac{(1 + sin \: \theta ) }{sin\theta \:\:}=
sinθ
(1+sinθ)
\displaystyle \: = \frac{1}{sin \: \theta \:} + 1=
sinθ
1
+1
\displaystyle \: = 1 + \frac{1}{sin \: \theta \:}=1+
sinθ
1
Similar questions
Accountancy,
3 months ago
Social Sciences,
3 months ago
Math,
3 months ago
English,
7 months ago
English,
11 months ago
English,
11 months ago