Math, asked by AjPicks2004, 7 days ago

Hey guys, please help me with this question (class 12th , chapter 3 : Trigonometric Functions)​

Attachments:

Answers

Answered by mathdude500
4

Given Question :-

Prove that, In triangle ABC

\rm \: cot\bigg(\dfrac{A}{2}  \bigg)  + cot\bigg(\dfrac{B}{2}  \bigg) + cot\bigg(\dfrac{C}{2}  \bigg) =  \dfrac{a + b + c}{b + c - a}cot\bigg(\dfrac{A}{2}  \bigg) \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: cot\bigg(\dfrac{A}{2}  \bigg)  + cot\bigg(\dfrac{B}{2}  \bigg) + cot\bigg(\dfrac{C}{2}  \bigg) \\

We know,

\boxed{\sf{  \:cot\bigg(\dfrac{A}{2}  \bigg) =  \sqrt{ \frac{s(s - a)}{(s - b)(s - c)} }  \: }} \\

So, using this result, we get

\rm \: =  \:  \sqrt{\dfrac{s(s - a)}{(s - b)(s - c)} } + \sqrt{\dfrac{s(s - b)}{(s - c)(s - a)} } + \sqrt{\dfrac{s(s - c)}{(s - a)(s - b)} } \\

can be rewritten as

\rm \: = \: \sqrt{\dfrac{s(s - a)^{2} }{(s - a)(s - b)(s - c)} } + \sqrt{\dfrac{s(s - b) ^{2} }{(s - c)(s - a)(s - b)} } + \sqrt{\dfrac{s(s - c)^{2} }{(s - a)(s - b)(s - c)} } \\

\rm \: =  \: \sqrt{\dfrac{s}{(s - a)(s - b)(s - c)} }(s - a + s - b + s - c) \\

\rm \: =  \: \sqrt{\dfrac{s}{(s - a)(s - b)(s - c)} }[3s - (a  + b + c)] \\

\rm \: =  \: \sqrt{\dfrac{s}{(s - a)(s - b)(s - c)} }[3s - 2s] \\

\rm \: =  \: s \: \sqrt{\dfrac{s}{(s - a)(s - b)(s - c)} } \\

can be further rewritten as

\rm \: =  \: s \: \sqrt{\dfrac{s(s - a)}{(s - a)^{2} (s - b)(s - c)} } \\

can be further rewritten as

\rm \: =  \:  \dfrac{s}{s - a}  \: \sqrt{\dfrac{s(s - a)}{(s - b)(s - c)} } \\

can be further rewritten as

\rm \: =  \:  \dfrac{2s}{2(s - a)}  \: cot\bigg(\dfrac{A}{2}  \bigg) \\

\rm \: =  \:  \dfrac{a + b + c}{2s - 2a}  \: cot\bigg(\dfrac{A}{2}  \bigg) \\

\rm \: =  \:  \dfrac{a + b + c}{a + b + c- 2a}  \: cot\bigg(\dfrac{A}{2}  \bigg) \\

\rm \: =  \:  \dfrac{a + b + c}{b + c- a}  \: cot\bigg(\dfrac{A}{2}  \bigg) \\

Hence,

\boxed{\sf{  \:\rm \: cot\bigg(\dfrac{A}{2}  \bigg)  + cot\bigg(\dfrac{B}{2}  \bigg) + cot\bigg(\dfrac{C}{2}  \bigg) =  \dfrac{a + b + c}{b + c - a}cot\bigg(\dfrac{A}{2}  \bigg)}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

In triangle ABC, if the sides are represented as a, b, c respectively then perimeter of triangle ABC is

\boxed{\sf{  \:2s = a + b + c \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\rm \: sin\bigg(\dfrac{A}{2}  \bigg) =  \sqrt{\dfrac{(s - b)(s - c)}{bc} }  \\

\rm \: sin\bigg(\dfrac{B}{2}  \bigg) =  \sqrt{\dfrac{(s - c)(s - a)}{ca} }  \\

\rm \: sin\bigg(\dfrac{C}{2}  \bigg) =  \sqrt{\dfrac{(s - a)(s - b)}{ab} }  \\

\rm \: cos\bigg(\dfrac{C}{2}  \bigg) =  \sqrt{\dfrac{s(s - c)}{ab} }  \\

\rm \: cos\bigg(\dfrac{B}{2}  \bigg) =  \sqrt{\dfrac{s(s - b)}{ac} }  \\

\rm \: cos\bigg(\dfrac{A}{2}  \bigg) =  \sqrt{\dfrac{s(s - a)}{bc} }  \\

\rm \: tan\bigg(\dfrac{A}{2}  \bigg) = \sqrt{\dfrac{(s - b)(s - c)}{s(s - a)} } \\

Attachments:
Similar questions