Math, asked by Anonymous, 11 months ago

hey guys please solve that...​

Attachments:

Answers

Answered by BrainlyConqueror0901
126

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

\huge{\pink{\boxed{\green{\underline{\red{\sf{TO\:PROOF:}}}}}}}

\huge{\red{\boxed{\pink{\sf{b^{3}+a^{2}c+ac^{2}=3abc}}}}}

Let one of the root of this given eqn

 \to first \: zeroes \: (\alpha ) \\  \to \: second \: zeroes \:  ({ \alpha })^{2}  \\ {\boxed{given \: eqn}} \\  \to \: a {x}^{2}  + bx + c = 0 \\

 \therefore \: sum \: of \: roots( \alpha  +  { \alpha }^{2} ) =  \frac{ - b}{a}  -  -  -  -  -  - (1) \\  \therefore \: product \: of \: roots( \alpha   \times { \alpha }^{2} ) =  \frac{c}{a}  \to \:  { \alpha }^{3}  =  \frac{c}{a}  -  -  -  -  -  (2) \\

Taking cube of (1)

 \to( { \alpha  +  { \alpha }^{2} })^{3}  =  \frac{ -  {b}^{3} }{ {a}^{3} }  \\   \to{ \alpha }^{3}  +  \alpha^{6}  + 3 \times  \alpha  \times  { \alpha }^{4}  + 3 { \alpha }^{2}  \times  { \alpha }^{2}  =  \frac{ - b^{3} }{ {a}^{3} }  \\  \to \:  { \alpha }^{3}  +  {( { \alpha }^{3} })^{2}  + 3 \alpha  ^{3} ( { \alpha }^{2}  +  \alpha ) =  \frac{ -  {b}^{3} }{ {a}^{3} }  -  -  -  -  -  - (3)

Substituting the value from (1) and (2)

  \to \: \frac{c}{a}  +  (\frac{c}{a} ) {}^{2} + 3  \times  \frac{c}{a}  ( \frac{ - b}{a} ) =   \frac{ -  {b}^{3} }{ {a}^{2} }  \\  \to \: \frac{c}{a}  +  \frac{ {c}^{2} }{ {a}^{2} }  -  \frac{3bc}{ {a}^{2} }  =   \frac{ -  {b}^{3} }{ {a}^{3} }

Multiplying the whole eqn by a^3

 \to \: {a}^{2} c + a {c}^{2}  - 3abc =  -  {b}^{3}  \\  \to \:   {b}^{2} +  {a}^{2} c +  {ac}^{2}  = 3abc

\huge{\red{\boxed{\green{\underline{\sf{PROVED}}}}}}

Answered by xDREAMGIRLx
3

Step-by-step explanation:

→firstzeroes(α)→secondzeroes(α)2giveneqn→ax2+bx+c=0

\begin{lgathered}\therefore \: sum \: of \: roots( \alpha + { \alpha }^{2} ) = \frac{ - b}{a} - - - - - - (1) \\ \therefore \: product \: of \: roots( \alpha \times { \alpha }^{2} ) = \frac{c}{a} \to \: { \alpha }^{3} = \frac{c}{a} - - - - - (2) \\\end{lgathered}∴sumofroots(α+α2)=a−b−−−−−−(1)∴productofroots(α×α2)=ac→α3=ac−−−−−(2)

Taking cube of (1)

\begin{lgathered}\to( { \alpha + { \alpha }^{2} })^{3} = \frac{ - {b}^{3} }{ {a}^{3} } \\ \to{ \alpha }^{3} + \alpha^{6} + 3 \times \alpha \times { \alpha }^{4} + 3 { \alpha }^{2} \times { \alpha }^{2} = \frac{ - b^{3} }{ {a}^{3} } \\ \to \: { \alpha }^{3} + {( { \alpha }^{3} })^{2} + 3 \alpha ^{3} ( { \alpha }^{2} + \alpha ) = \frac{ - {b}^{3} }{ {a}^{3} } - - - - - - (3)\end{lgathered}→(α+α2)3=a3−b3→α3+α6+3×α×α4+3α2×α2=a3−b3→α3+(α3)2+3α3(α2+α)=a3−b3−−−−−−(3)

Substituting the value from (1) and(2)

\begin{lgathered}\to \: \frac{c}{a} + (\frac{c}{a} ) {}^{2} + 3 \times \frac{c}{a} ( \frac{ - b}{a} ) = \frac{ - {b}^{3} }{ {a}^{2} } \\ \to \: \frac{c}{a} + \frac{ {c}^{2} }{ {a}^{2} } - \frac{3bc}{ {a}^{2} } = \frac{ - {b}^{3} }{ {a}^{3} }\end{lgathered}→ac+(ac)2+3×ac(a−b)=a2−b3→ac+a2c2−a23bc=a3−b3

Multiplying the whole eqn by a^3

\begin{lgathered}\to \: {a}^{2} c + a {c}^{2} - 3abc = - {b}^{3} \\ \to \: {b}^{2} + {a}^{2} c + {ac}^{2} ={PROVED

Similar questions