hey guys!!☺☺
pleaseeeee try to solve this !❤❤
if tan A + cot A =2 show that tan ^2 A + cot ^2 A =2
anujdhaka0077:
how R u?
Answers
Answered by
6
tanA=1cotAtanA=1cotA(x−y)2=x2−2.x.y+y2(x−y)2=x2−2.x.y+y2
Given,
tanA+cotA=2tanA+cotA=2
From Prerequisite 1
tanA+1tanA=2tanA+1tanA=2
tan2A+1tanA=2tan2A+1tanA=2
tan2A+1=2.tanAtan2A+1=2.tanA
tan2A−2.tanA+12=0tan2A−2.tanA+12=0
From Prerequisite 2
(tanA−1)2=0(tanA−1)2=0
tanA−1=0tanA−1=0
tanA=1tanA=1
cotA=1cotA=1
So ,
tan7A+cot7Atan7A+cot7A
(tanA)7+(cotA)7A(tanA)7+(cotA)7A
Putting value of tanAtanA and cotAcotA
1+1=2
So answer is 2
Answered by
5
tana + cota =2
take square both sides
(tana + cota)² = 2²
tan²a + cot²a +2tana.cota =4
we Know,
tana =1/cota
so,
tan² a + cot²a +2 = 4
tan²a + cot² a = 4 -2 = 2
Similar questions