Physics, asked by Anonymous, 11 months ago

Hey Guys ...Plss Solve this Integration ONLY BEST answer is required ✌✌​

Attachments:

Answers

Answered by Anonymous
3

Answer:

\large\boxed{\sf{ -\dfrac{1}{ \sqrt{ {x}^{2} +  {a}^{2}  } }  + c}}

Explanation:

To integrate the given expression,

\displaystyle\int  \dfrac{xdx}{ {( {x}^{2} +  {a}^{2})  }^{ \frac{3}{2} } }

Let's assume that,

 {x}^{2}  +  {a}^{2}  =  {t}^{2}

On differentiatiating both sides, we get,

 =  > 2xdx = 2tdt \\  \\  =  > xdx = tdt

Substituting the values in given integral, we get,

 = \displaystyle\int  \dfrac{tdt}{ {( {t}^{2}) }^{ \frac{3}{2} } }  \\  \\  =  \displaystyle\int  \dfrac{t}{ {t}^{3} } dt \\  \\  = \displaystyle\int  {t}^{ - 2} dt

But, we know that,

  • \displaystyle\int  {x}^{n}  =  \dfrac{ {x}^{n + 1} }{n + 1}

Therefore, we will get,

 =  \dfrac{ {t}^{ - 2 + 1} }{ - 2 + 1}  + c \\  \\  =  \dfrac{ {t}^{ - 1} }{ - 1} + c  \\  \\  =  -  \dfrac{1}{t}  + c

Substituting the value of t, we get,

 = - \dfrac{1}{ \sqrt{ {x}^{2} +  {a}^{2}  } }  + c

Where, c is any arbitrary constant.

Similar questions