HEY GUYS
PLZ SOLVE
If a²sec²∅ - b²tan²∅ = c² , prove that
sin²∅ = c² - a²/c² - b²
dare to solve it
ONLY FOR
# BRAINLY SPAMMERS#
Answers
Answered by
2
Heya
_______________________________
We know that Sec² x = 1/Cos² x
And
Tan² x = Sin² x / Cos² x
______________________________
L.H.S
Let Angle be = x
=>
a² - b² Sin² x
__________ = c²
Cos² x
=>
a² - b² Sin²x = c² { 1 - Sin² x }
becoz { Cos² x = 1 - Sin² x }
=>
a² - c² = b² Sin² x - c² Sin² x
=>
a² - c² = Sin ² x { b² - c² }
=>
Sin² x = { a² - c² }/ { b² - c² }
=>
Sin² x = -{ c² - a² }/ -{ c² - b² }
=>
Sin² x = { c² - a² }/ { c² - b² }
Hence, proved.
_______________________________
We know that Sec² x = 1/Cos² x
And
Tan² x = Sin² x / Cos² x
______________________________
L.H.S
Let Angle be = x
=>
a² - b² Sin² x
__________ = c²
Cos² x
=>
a² - b² Sin²x = c² { 1 - Sin² x }
becoz { Cos² x = 1 - Sin² x }
=>
a² - c² = b² Sin² x - c² Sin² x
=>
a² - c² = Sin ² x { b² - c² }
=>
Sin² x = { a² - c² }/ { b² - c² }
=>
Sin² x = -{ c² - a² }/ -{ c² - b² }
=>
Sin² x = { c² - a² }/ { c² - b² }
Hence, proved.
Similar questions