Math, asked by swatii60, 11 months ago

Hey guys !!

Plzz solve this problem ..

If Tan ø + sin ø = m, tan theta - sin theta = n, show that m² - n² = 4√mn.

!!____________________________!!​

Answers

Answered by PeterMJ
11

Answer:

Step-by-step explanation:

Attachments:
Answered by Vaibhavhoax
122

  \boxed{\red{ SOLUTION:}}

Substituting the value of m and n in L.H.S. and R.H.S.

L.H.S. = m² - n²

= (tan ∅ + sin∅ )² - (tan ∅ - sin ∅)²

= tan²∅ + sin²∅ + 2tan∅ sin∅ - (tan²∅ + sin²∅ - 2tan∅ sin∅)

= tan²∅ + sin²∅ + 2 tan∅ sin∅ - tan²∅ - sin²∅ + 2tan ∅ sin∅

= 4tan ∅ sin ∅

R.H.S. = 4√mn

= 4√(tan∅ + sin∅ ) (tan∅ - sin∅

= 4√tan²∅ - sin²∅

 = 4 \sqrt{ \frac{ {sin}^{2} \theta}{ {cos}^{2} \theta }  -  {sin}^{2}  \theta}

 = 4 \sqrt{ \frac{ {sin}^{2} \theta  -  {sin}^{2} \theta  {cos}^{2} \theta }{ { cos}^{2}  \theta} }

 = 4 \sqrt{ \frac{ {sin}^{2}  \theta(1 -  {cos}^{2}  \theta)}{ {cos}^{2}  \theta} }  = 4 \sqrt{ \frac{ {sin}^{2}  \theta {sin}^{2}  \theta}{ {cos}^{2}  \theta} }

= 4√tan²∅ sin²∅ = 4tan∅ sin∅

LHS = RHS

Hence proved.

it helps you

glad help you

thank you ☺️


Anonymous: Nice dear ! :)
Similar questions