Math, asked by pratyush4211, 1 year ago

Hey guys Quickly Solve all 3 Questions.
(47,48,49)

Answers are

47 .  \:  \:  \:  \: \frac{ - 7 \sqrt{2} - 24 \sqrt{3} - 9 \sqrt{6}   - 30 }{92} \\  \\ 48.  \:  \: \frac{3 \sqrt{14} + 9 \sqrt{35}  - 5 \sqrt{6}   - 15 \sqrt{15} }{ - 12}   \\  \\ 49. \:  \: 6.527
I want All answers in Explanation

Attachments:

Answers

Answered by Grimmjow
24

\mathsf{47.\;\;Given :\;\dfrac{1}{3 + \sqrt{2} - 3\sqrt{3}}}

\mathsf{Multiplying\;numerator\;and\;denominator\;with\;3 + \sqrt{2} + 3\sqrt{3},\;We\;get :}

\mathsf{\implies \dfrac{3 + \sqrt{2} + 3\sqrt{3}}{(3 + \sqrt{2} - 3\sqrt{3})(3 + \sqrt{2} + 3\sqrt{3})}}

★  We know that : (A + B)(A - B) = A² - B²

\mathsf{\implies \dfrac{3 + \sqrt{2} + 3\sqrt{3}}{(3 + \sqrt{2})^2 - (3\sqrt{3})^2}}

\mathsf{\implies \dfrac{3 + \sqrt{2} + 3\sqrt{3}}{(3)^2 + (\sqrt{2})^2 + 2(3)\sqrt{2} - 9(\sqrt{3})^2}}

\mathsf{\implies \dfrac{3 + \sqrt{2} + 3\sqrt{3}}{9 + 2 + 6\sqrt{2} - 9(3)}}

\mathsf{\implies \dfrac{3 + \sqrt{2} + 3\sqrt{3}}{11 + 6\sqrt{2} - 27}}

\mathsf{\implies \dfrac{3 + \sqrt{2} + 3\sqrt{3}}{6\sqrt{2} - 16}}

\mathsf{Multiplying\;numerator\;and\;denominator\;with\;6\sqrt{2} + 16,\;We\;get :}

\mathsf{\implies \dfrac{(3 + \sqrt{2} + 3\sqrt{3})(6\sqrt{2} + 16)}{(6\sqrt{2} - 16)(6\sqrt{2} + 16)}}

\mathsf{\implies \dfrac{3(6\sqrt{2}) + 3(16) + 6\sqrt{2}(\sqrt{2}) + 16\sqrt{2} + 3\sqrt{3}(6\sqrt{2}) + 16(3\sqrt{3})}{(6\sqrt{2})^2 - (16)^2}}

\mathsf{\implies \dfrac{18\sqrt{2} + 48 + 6(2) + 16\sqrt{2} + 18\sqrt{6} + 48\sqrt{3}}{36(\sqrt{2})^2 - 256}}

\mathsf{\implies \dfrac{34\sqrt{2} + 48 + 12 + 18\sqrt{6} + 48\sqrt{3}}{36(2) - 256}}

\mathsf{\implies \dfrac{34\sqrt{2} + 60 + 18\sqrt{6} + 48\sqrt{3}}{72 - 256}}

\mathsf{\implies \dfrac{34\sqrt{2} + 60 + 18\sqrt{6} + 48\sqrt{3}}{-184}}

\mathsf{\implies \dfrac{2(17\sqrt{2} + 30 + 9\sqrt{6} + 24\sqrt{3})}{-184}}

\mathsf{\implies \dfrac{-17\sqrt{2} - 30 - 9\sqrt{6} - 24\sqrt{3}}{92}}

\mathsf{48.\;\;Given :\;\dfrac{\sqrt{2} + 3\sqrt{5}}{3\sqrt{7} + 5\sqrt{3}}}

\mathsf{Multiplying\;numerator\;and\;denominator\;with\;3\sqrt{7} - 5\sqrt{3},\;We\;get :}

\mathsf{\implies \dfrac{(\sqrt{2} + 3\sqrt{5})(3\sqrt{7} - 5\sqrt{3})}{(3\sqrt{7} + 5\sqrt{3})(3\sqrt{7} - 5\sqrt{3})}}

\mathsf{\implies \dfrac{\sqrt{2}(3\sqrt{7}) - \sqrt{2}(5\sqrt{3}) + 3\sqrt{5}(3\sqrt{7}) - 3\sqrt{5}(5\sqrt{3}) }{(3\sqrt{7})^2 - (5\sqrt{3})^2}}

\mathsf{\implies \dfrac{3\sqrt{14} - 5\sqrt{6} + 9\sqrt{35} - 15\sqrt{15} }{9(\sqrt{7})^2 - 25(\sqrt{3})^2}}

\mathsf{\implies \dfrac{3\sqrt{14} - 5\sqrt{6} + 9\sqrt{35} - 15\sqrt{15} }{9(7) - 25(3)}}

\mathsf{\implies \dfrac{3\sqrt{14} - 5\sqrt{6} + 9\sqrt{35} - 15\sqrt{15} }{63 - 75}}

\mathsf{\implies \dfrac{3\sqrt{14} - 5\sqrt{6} + 9\sqrt{35} - 15\sqrt{15} }{-12}}

\mathsf{49.\;\;Given :\;\dfrac{\sqrt{3} + 1}{\sqrt{3} - 1} + \dfrac{\sqrt{3} - 1}{\sqrt{3} + 1} + \dfrac{\sqrt{3} + 4}{4 - \sqrt{3}}}

Taking LCM between First two fractions, We get :

\mathsf{\implies \dfrac{(\sqrt{3} + 1)(\sqrt{3} + 1) + (\sqrt{3} - 1)(\sqrt{3} - 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} + \dfrac{\sqrt{3} + 4}{4 - \sqrt{3}}}

\mathsf{\implies \dfrac{(\sqrt{3} + 1)^2 + (\sqrt{3} - 1)^2}{(\sqrt{3})^2 - 1} + \dfrac{\sqrt{3} + 4}{4 - \sqrt{3}}}

★  We know that : (A + B)² = A² + B² + 2.A.B

\mathsf{\implies \dfrac{(\sqrt{3})^2 + 1 + 2\sqrt{3} + (\sqrt{3})^2 + 1 - 2\sqrt{3}}{(\sqrt{3})^2 - 1} + \dfrac{\sqrt{3} + 4}{4 - \sqrt{3}}}

\mathsf{\implies \dfrac{3 + 1 + 3 + 1}{3 - 1} + \dfrac{\sqrt{3} + 4}{4 - \sqrt{3}}}

\mathsf{\implies \dfrac{8}{2} + \dfrac{\sqrt{3} + 4}{4 - \sqrt{3}}}

\mathsf{\implies 4 + \dfrac{\sqrt{3} + 4}{4 - \sqrt{3}}}

Now, Consider only the Fraction :

\mathsf{Multiplying\;numerator\;and\;denominator\;with\;4 + \sqrt{3},\;We\;get :}

\mathsf{\implies 4 + \dfrac{(\sqrt{3} + 4)(4 + \sqrt{3})}{(4 - \sqrt{3})(4 + \sqrt{3})}}

\mathsf{\implies 4 + \dfrac{(4 + \sqrt{3})^2}{(4)^2 - (\sqrt{3})^2}}

\mathsf{\implies 4 + \dfrac{(4)^2 + (\sqrt{3})^2 + 2(4)\sqrt{3}}{16 - 3}}

\mathsf{\implies 4 + \dfrac{16 + 3 + 8\sqrt{3}}{13}}

\mathsf{\implies 4 + \dfrac{19 + 8\sqrt{3}}{13}}

\mathsf{Given : \sqrt{3} = 1.7321}

\mathsf{\implies 4 + \dfrac{19 + 8(1.7321)}{13}}

\mathsf{\implies 4 + \dfrac{19 + 13.8568}{13}}

\mathsf{\implies 4 + \dfrac{32.8568}{13}}

\mathsf{\implies 4 + 2.527}

\mathsf{\implies 6.527}


Anonymous: Lovely Bro :)
Grimmjow: Thank you! ^_^
dimonddartfield: Great job
Grimmjow: Thank you! ^•^
dimonddartfield: yup your welcome
Avengers00: nice answer
Grimmjow: Feeling Happy! ^•^
dimonddartfield: NICE*
Swarnimkumar22: Nice answer
Grimmjow: Thank you! (^•^)
Similar questions