Hey guys
Solve the attachment 8 questions using this identity :
(a - b)³= a³ - 3a²b + 3ab² - b²
Answers
1. (2m - 5)³
For this question we will use this identity ⇒ (a - b)³= a³ - 3a²b + 3ab² - b³
Here,
a = 2m
b = 5
So let's expand.
⇒ (2m - 5)³
⇒ (2m)³ - (3) (2m)² (5) + (3) (2m) (5²) - 5³
⇒ 8m³ - 3 (4m²) (5) + (3) (2m) (25) - 125
⇒ 8m³ - 15 (4m²) + 75 (2m) - 125
⇒ 8m³ - 60m² + 150m - 125
2. (4 - p)³
For this question we will use this identity ⇒ (a - b)³= a³ - 3a²b + 3ab² - b³
Here,
a = 4
b = p
So let's expand.
⇒ 4³ - (3) (4²) (p) + (3) (4) (p²) - p³
⇒ 64 - 3 (16) (p) + (12) (p²) - p³
⇒ 64 - 48p + 12p² - p³
3. (7x - 9y)³
For this question we will use this identity ⇒ (a - b)³= a³ - 3a²b + 3ab² - b³
Here,
a = 7x
b = 9y
So let's expand.
⇒ (7x)³ - (3) (7x)² (9y) + (3) (7x) (9y)² - (9y)³
⇒ 343³ - 3 (49x²) (9y) + 3 (7x) (81y²) - 729y³
⇒ 343³ - 147x² (9y) + 21x (81y²) - 729y³
⇒ 343³ - 1323x²y + 1701xy² - 729y³
4. (58)³
For this question we will use this identity ⇒ (a - b)³= a³ - 3a²b + 3ab² - b³
Here,
a = 60
b = 2
So let's expand.
⇒ 60³ - (3) (60²) (2) + (3) (60) (2²) - 2³
⇒ 216000 - 3 (3600) (2) + 180 (4) - 8
⇒ 216000 - 6 (3600) + 720 - 8
⇒ 216000 - 21600 + 720 - 8
⇒ 216000 + 720 - 21600 - 8
⇒ 216720 - 21600 - 8
⇒ 195120 - 8
⇒ 195112
5. (198)³
For this question we will use this identity ⇒ (a - b)³= a³ - 3a²b + 3ab² - b³
Here,
a = 200
b = 2
So let's expand.
⇒ 200³ - (3) (200²) (2) + (3) (200) (2²) - 2³
⇒ 8000000 - 6 (40000) + 12 (200) - 8
⇒ 8000000 - 240000 + 2400 - 8
⇒ 8000000 + 2400 - 240000 - 8
⇒ 8002400 - 240000 - 8
⇒ 7762400 - 8
⇒ 7762392
6.
For this question we will use this identity ⇒ (a - b)³= a³ - 3a²b + 3ab² - b³
Here,
a = 2p
b =
So let's expand.
⇒
⇒
⇒
⇒
7.
For this question we will use this identity ⇒ (a - b)³= a³ - 3a²b + 3ab² - b³
Here,
a = 1
b =
So let's expand.
⇒
⇒
⇒
⇒
8.
For this question we will use this identity ⇒ (a - b)³= a³ - 3a²b + 3ab² - b³
Here,
a =
b =
So let's expand.
⇒
⇒
⇒
⇒
Answer:
Expressed in words, the difference of the cubes of two quantities is the product of the difference of the two quantities by the “imperfect square of the sum.”
Proof:
We know the well-known formula
(a-b)³=a³-3 a²b+3 ab²-b³
By transposition,
a³ - b³ = (a-b)³ + 3 a²b - 3 ab²
a³ - b³ = (a-b)³ +3 ab(a-b)
a³ - b³ = (a-b) [(a-b)² +3 ab]
a³ - b³ = (a-b) [(a-b)² +3 ab]
We all know (a - b)² = a² - 2 ab + b²
So
a³ - b³ = (a-b) [(a² - 2 ab + b²) +3 ab]
a³-b³= (a-b)(a²+ab+ b²) [Proved]