Math, asked by nidhiakara, 11 months ago

Hey guys solve this.......​

Attachments:

Answers

Answered by Rajshuklakld
3

Solution:-

x =  \frac{ { sin}^{3}</strong><strong>alpha</strong><strong>  }{ {cos}^{2} \alpha  } ...................i) \\ y =  \frac{ {cos}^{3} \alpha  }{  {sin}^{2} \alpha   } ...................ii) \\ add \: both \: equation \\ x + y =  \frac{ {sin}^{3} \alpha  }{ {cos}^{2}  \alpha }  +  \frac{ {cos}^{3} \alpha  }{ {sin}^{2}  \alpha } \\ x + y =  \frac{ {sin}^{3}  \alpha . {sin}^{2}  \alpha  +  {cos}^{3}  \alpha . {cos}^{2}  \alpha }{ {( \cos \alpha  sin \alpha )}^{2} }   \\ now \: convert \:  {sin}^{2}  \alpha \:  in \: 1 -  {cos}^{2} \alpha and \:  {cos}^{2}  \alpha  \\ in 1 -  {sin}^{2} \alpha  \\ x + y =  \frac{ {sin}^{3} \alpha (1 -  {cos}^{2} \alpha ) +  {cos}^{3} \alpha (1 -  {sin}^{2}  \alpha )   }{ {cos}^{2} \alpha  {sin}^{2} \alpha   }   \\ x + y =  \frac{ {sin}^{3}  \alpha  -  {sin}^{3}  \alpha  {cos}^{2}  \alpha  +  {cos}^{3} \alpha  -  {cos}^{3}  \alpha  {sin}^{2}  \alpha  }{ {sin}^{2} \alpha  {cos}^{2}   \alpha }  \\ x + y =  \frac{ {sin}^{3} \alpha  +  {cos}^{3}  \alpha  -  {sin}^{2} \alpha  {cos}^{2} \alpha (sin \alpha  + cos \alpha )   }{ {sin}^{2}  \alpha  {cos}^{2}  \alpha }  \\ x + y =  \frac{(sin \alpha  + cos \alpha )( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  - sin \alpha cos \alpha ) -  {sin}^{2}  \alpha   {cos}^{2} \alpha (sin \alpha  + cos \alpha ) }{ {sin}^{2}  \alpha  {cos}^{2}  \alpha }  \\ x + y =  \frac{(sin \alpha  + cos \alpha )(1 - sin \alpha  \cos \alpha ) -  {sin}^{2} \alpha  {cos}^{2}  \alpha (sin \alpha  + cos \alpha )  }{ {sin}^{2} \alpha  {cos}^{2}   \alpha }........i) \\  {(sin \alpha  + cos \alpha )}^{2}  =  \frac{1}{4} \\  {sin}^{2}  \alpha  +  {cos}^{2}   \alpha  + 2sin \alpha cos \alpha  =  \frac{1}{4}  \\ 2sin \alpha cos \alpha  =  \frac{1}{4}  - 1 \\ sin \alpha cos \alpha  =  \frac{ - 3}{8} \\ now \: put \: these \: values \: in \: eq.i) \\  x + y =  \frac{ \frac{1}{2} (1  +  \frac{3}{8}) -  \frac{9}{64} \times  \frac{1}{2}   }{ \frac{9}{64} }  \\ x + y =  \frac{79}{18}

Similar questions