☯️HEY GUYS ....SOLVE THIS ONE....☯️
❌NO SPAM❌
❤️LOVE U ALL❤️
Attachments:
Answers
Answered by
14
sargamkashyap:
thanks yrr....❤️❤️
Answered by
3
2(sin^6x + cos^6x) - 3(sin^4x + cos^4x)+1
=2[(sin^2x)^3+ (cos^2x)^3] - 3(sin^4x + cos^4x)+1
= 2(sin^2x + cos^2x)(sin^4x - sin^2xcos^2x + cos^4x)-3(sin^4x + cos^4x)+1 [a^3+b^3=(a+b)(a2-ab+b2)]
= 2(sin^4x - sin^2xcos^2x + cos^4x) - 3(sin^4x + cos^4x)+1 [As sin^2x + cos^2x=1]
= 2(sin^4x + cos^4x) - 2sin^2xcos^2x - 3(sin^4x + cos^4x)+1
= -(sin^4x + cos^4x) - 2sin^2xcos^2x+1
= -(sin^4x + cos^4x + 2sin^2xcos^2x)+1
= -[(sin^2x)^2+ (cos^2x)^2+ 2(sin^2x)(cos^2x)]+1
= -(sin^2x + cos^2x)^2+1 [As a2+b2+2ab=(a+b)2]
= -(1)^2+1 [As sin^2x + cos^2x=1]
= -1+1 =0
Hence, 2(sin^6x + cos^6x) - 3(sin^4x + cos^4x)+1=0
Hope it helps you
=2[(sin^2x)^3+ (cos^2x)^3] - 3(sin^4x + cos^4x)+1
= 2(sin^2x + cos^2x)(sin^4x - sin^2xcos^2x + cos^4x)-3(sin^4x + cos^4x)+1 [a^3+b^3=(a+b)(a2-ab+b2)]
= 2(sin^4x - sin^2xcos^2x + cos^4x) - 3(sin^4x + cos^4x)+1 [As sin^2x + cos^2x=1]
= 2(sin^4x + cos^4x) - 2sin^2xcos^2x - 3(sin^4x + cos^4x)+1
= -(sin^4x + cos^4x) - 2sin^2xcos^2x+1
= -(sin^4x + cos^4x + 2sin^2xcos^2x)+1
= -[(sin^2x)^2+ (cos^2x)^2+ 2(sin^2x)(cos^2x)]+1
= -(sin^2x + cos^2x)^2+1 [As a2+b2+2ab=(a+b)2]
= -(1)^2+1 [As sin^2x + cos^2x=1]
= -1+1 =0
Hence, 2(sin^6x + cos^6x) - 3(sin^4x + cos^4x)+1=0
Hope it helps you
Similar questions