Math, asked by ash200616, 10 months ago

hey guyz
answer this plz

Attachments:

Answers

Answered by shadowsabers03
6

We are asked to write all other trigonometric ratios of the angle A in terms of \sf{\sec A.}

Since \sf{\sec A} and \sf{\cos A} are reciprocals to each other,

\longrightarrow\sf{\underline{\underline{\cos A=\dfrac{1}{\sec A}}}}

We know the Pythagorean Trigonometric Identities,

\longrightarrow\sf{\sec^2A-\tan^2A=1\quad\quad\dots(1)}

\longrightarrow\sf{\sin^2A+\cos^2A=1\quad\quad\dots(2)}

From (1),

\longrightarrow\sf{\tan^2A=\sec^2A-1}

\longrightarrow\sf{\underline{\underline{\tan A=\sqrt{\sec^2A-1}}}}

On taking reciprocal of this equation,

\longrightarrow\sf{\underline{\underline{\cot A=\dfrac{1}{\sqrt{\sec^2A-1}}}}}

From (2),

\longrightarrow\sf{\sin^2A=1-\cos^2A}

\longrightarrow\sf{\sin^2A=1-\dfrac{1}{\sec^2A}}

\longrightarrow\sf{\sin^2A=\dfrac{\sec^2A-1}{\sec^2A}}

\longrightarrow\sf{\underline{\underline{\sin A=\dfrac{\sqrt{\sec^2A-1}}{\sec A}}}}

On taking the reciprocal of this equation,

\longrightarrow\sf{\underline{\underline{\csc A=\dfrac{\sec A}{\sqrt{\sec^2A-1}}}}}

Finally,

  • \sf{\underline{\underline{\sin A=\dfrac{\sqrt{\sec^2A-1}}{\sec A}}}}

  • \sf{\underline{\underline{\cos A=\dfrac{1}{\sec A}}}}

  • \sf{\underline{\underline{\tan A=\sqrt{\sec^2A-1}}}}

  • \sf{\underline{\underline{\csc A=\dfrac{\sec A}{\sqrt{\sec^2A-1}}}}}

  • \sf{\underline{\underline{\cot A=\dfrac{1}{\sqrt{\sec^2A-1}}}}}
Answered by Anonymous
17

 \sf{To\:Write \: angle\:in \:term\:of\:secA} \\

In Cos A

  • \boxed{\sf{ \cos A = \frac{1}{ \sec A} }} \\

In sin A

 \sf{ \sin A = \sqrt{ 1 - {\cos}^{2} A }} \\

 \sf{\sin A = \sqrt{1 - \frac{1}{ {\sec}^{2} A}}} \\

  • \boxed{\sf{ \sin(a)  =  \frac{ \sqrt{ { \sec(a)^{2}  - 1 }^{2} } }{ \sec(a) } }} \\

In tan A

 \sf{{\tan}^{2} A = {\sec}^{2} A - 1} \\

  •  \boxed {\sf{ \tan(a)  =  \sqrt{ { \sec(a) }^{2}  - 1} }} \\

In Cot A

Cot is the reciprocal of tan A . So ,

  •  \boxed{ \sf{ \cot(a)  =  \frac{1}{ \sqrt{ { \sec(a) }^{2} - 1 } } }} \\

In Cosec A

Cosec is the reciprocal of sin A .

 \sf{ \sin(a)  =  \frac{ \sqrt{ { \sec(a)^{2}  - 1 }^{2} } }{ \sec(a) } } \\

It's reciprocal value is equal to Cosec A

  • \boxed{\sf{\cosec A = \frac{\sec A}{\sqrt{{\sec}^{2} A - 1}}}} \\

In sec A

  • Sec A = Sec A.

So we converted all trigonometric ratios in term of sec A .

Some identities to remember .

 { \sin(a) }^{2}  +  { \cos(a) }^{2}  = 1 \\

{\tan}^{2} + 1 = {\sec}^{2} A \\

 { \cot(a) }^{2}  + 1 =  { \csc(a) }^{2}  \\

Similar questions