Math, asked by smartykiller, 8 months ago

Hey guyz,

Solve this question if u can....

otherwise don't spam

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tan( \theta )  = 2 -  \sqrt{3}

So,

 \cot(\theta)  =  \frac{1}{ \tan(\theta) }  =  \frac{1}{2 -  \sqrt{3} }

 =  >  \cot( \theta)  =  \frac{2 +  \sqrt{3} }{(2 -  \sqrt{3})(2 +  \sqrt{3} ) }

 =  >  \cot( \theta)  = 2 +  \sqrt{3}

Now,

 \tan^{3} (\theta)  +  \cot^{3} (\theta)  - 2 = (2 -  \sqrt{3} )^{3} + (2 +  \sqrt{3}  )^{3}  - 2

We know , (a + b)³ + (a - b)³ = 2( a³ + 3ab² )

So, we have,

 \tan^{3} (\theta)  +  \cot^{3} (\theta)  - 2  = 2((2)^{3}  + 3(2)( \sqrt{3} )^{2} )

 =  > \tan^{3} (\theta)  +  \cot^{3} (\theta)  - 2  = 2(8 + 18)

 =  > \tan^{3} (\theta)  +  \cot^{3} (\theta)  - 2  = 52

Answered by Anonymous
5

Step-by-step explanation:

We have,

\tan( \theta ) = 2 - \sqrt{3}tan(θ)=2−3

So,

\cot(\theta) = \frac{1}{ \tan(\theta) } = \frac{1}{2 - \sqrt{3} }cot(θ)=tan(θ)1=2−31

= > \cot( \theta) = \frac{2 + \sqrt{3} }{(2 - \sqrt{3})(2 + \sqrt{3} ) }=>cot(θ)=(2−3)(2+3)2+3

= > \cot( \theta) = 2 + \sqrt{3}=>cot(θ)=2+3

Now,

\tan^{3} (\theta) + \cot^{3} (\theta) - 2 = (2 - \sqrt{3} )^{3} + (2 + \sqrt{3} )^{3} - 2tan3(θ)+cot3(θ)−2=(2−3)3+(2+3)3−2

We know , (a + b)³ + (a - b)³ = 2( a³ + 3ab² )

So, we have,

\tan^{3} (\theta) + \cot^{3} (\theta) - 2 = 2((2)^{3} + 3(2)( \sqrt{3} )^{2} )tan3(θ)+cot3(θ)−2=2((2)3+3(2)(3)2)

= > \tan^{3} (\theta) + \cot^{3} (\theta) - 2 = 2(8 + 18)=>tan3(θ)+cot3(θ)−2=2(8+18)

= > \tan^{3} (\theta) + \cot^{3} (\theta) - 2 = 52=>tan3(θ)+cot3(θ)−2=52

Similar questions