Math, asked by Anonymous, 1 year ago

Hey !!

Here is my question ...


From Trigonometry class 10 ...

Need Well Solution ...
 \frac{ \cos( \alpha ) -  \sin( \alpha )  + 1 }{  \cos( \alpha )  +  \sin( \alpha ) - 1 }  =  cosec ( \alpha ) +  \cot( \alpha )  \\  \\ using \: the \: identity \:  {cosec}^{2} ( \alpha)  = 1 +  \cot( \alpha )


====================

Don't spam ..

Answers

Answered by Pikaachu
5
Hey Miss Perfect ÷_÷

(•) Trigonometry ✓✓

Given Expression,

E = \frac{ \cos( \alpha ) - \sin( \alpha ) + 1 }{ \cos( \alpha ) + \sin( \alpha ) - 1 }

* But the Formula,

\csc^{2} ( \alpha ) = 1 + \cot {}^{2} ( \alpha )

-> ReQuires, the basic terms cosec and cot !

So, Divide and Multiply the expression by sin

E = \frac{ \cot( \alpha ) + \csc( \alpha ) - 1 }{ \cot( \alpha ) - \csc( \alpha ) + 1 }

Now, substitute the value of "1" ( from the formula ) in Numerator !

E = \frac{( \cot( \alpha ) + \csc( \alpha ))(1 + \cot( \alpha ) - \csc( \alpha ) )}{(1 + \cot( \alpha ) - \csc( \alpha ) )}

Cancel the common terms and ->

E = ( \cot( \alpha ) + \csc( \alpha ))

Anonymous: thnq
Answered by Anonymous
0
heya....!!!

✔here is ua answer:

___________________________________________❤

E=cos(α)+sin(α)−1cos(α)−sin(α)+1​ 

* But the Formula,

\csc^{2} ( \alpha ) = 1 + \cot {}^{2} ( \alpha )csc2(α)=1+cot2(α) 

-> ReQuires, the basic terms cosec and cot ! 

So, Divide and Multiply the expression by sin

E = \frac{ \cot( \alpha ) + \csc( \alpha ) - 1 }{ \cot( \alpha ) - \csc( \alpha ) + 1 }E=cot(α)−csc(α)+1cot(α)+csc(α)−1​ 

Now, substitute the value of "1" ( from the formula ) in Numerator !

E = \frac{( \cot( \alpha ) + \csc( \alpha ))(1 + \cot( \alpha ) - \csc( \alpha ) )}{(1 + \cot( \alpha ) - \csc( \alpha ) )}E=(1+cot(α)−csc(α))(cot(α)+csc(α))(1+cot(α)−csc(α))​ 

Cancel the common terms and ->

E = ( \cot( \alpha ) + \csc( \alpha ))E=(cot(α)+csc(α))

hope it helps...!!!!❤
Similar questions