Math, asked by warwix51, 1 year ago

Hey!! how y'all doing? I need the answer of this question. (21 pts each)

Attachments:

Answers

Answered by Anonymous
2
Heya!!!

Kindly refer to the attachment for solution ^_^

Hope it helps ^_^
Attachments:

warwix51: Welp that was easy! thanks.
Anonymous: yeah...my pleasure!!!
Answered by siddhartharao77
1

Answer:

S₁ + S₃ = 2S₂

Step-by-step explanation:

Sum of n terms of an AP sn = (n/2)[2a + (n - 1) * d]

(i) S₁

First term(a) = 1

Common difference(d) = 1

Sum of n terms = (n/2)[2 + (n - 1) * 1]

                         = (n/2)[2 + n - 1]

                         = (n/2)[n + 1]

                         = n(n+1)/2



(ii) S₂:

First term(a) = 1

Common difference(d) = 2

Sum of n terms = (n/2)[2a + (n - 1) * d]

                          = (n/2)[2 + (n - 1) * 2]

                          = (n/2)[2 + 2n - 2]

                          = (n/2)[2n]

                          = n²


(iii) S₃:

First term(a) = 1

Common difference (d) = 3

Sum of n terms = (n/2)[2a + (n - 1) * d]

                          = (n/2)[2 + (n - 1) * 3]

                          = (n/2)[2 + 3n - 3]

                          = (n/2)[3n - 1]

                          = n(3n - 1)/2


LHS:

S₁ + S₃ = {n(n+1)/2} + {n(3n - 1)/2}

           = n[n + 1 + 3n - 1]/2

           = n[n + 3n]/2

           = n[4n]/2

           = 2n²

           = 2S₂ {From (ii)}

           = RHS


Therefore, S₁ + S₃ = 2S₂


Hope it helps!

Similar questions