Math, asked by dddd52, 10 months ago

hey ❣️







If sin A =3/5

calculate

(1) cos A

(2) tan A


Answers

Answered by Anonymous
4

Hey mate

Given here

SinA= 3/5

find here

(1) Cos A

(2) Tan A

Solution:-

Sin A=3/5

We know

Cos A= [1-Sin²A]

= [1-(3/5)²]

= [1-9/25]

= (16/25)

= 4/5

And,

Tan A= SinA/CosA

= (3/5) / (4/5)

= 3/5× 5/4

= 3/4

Hopes its help's u

Follow me

@Abhi

Answered by Anonymous
17

SOLUTION

sin </u><u>A</u><u>=  \frac{3}{5}</u><u>\</u><u>:</u><u>,</u><u> </u><u> </u><u>A</u><u> \: lies \: in \: first \: quadrant \\ </u><u>H</u><u>ence \\\  =  &gt;cos </u><u>A</u><u>=  \sqrt{1 -  {sin}^{2} </u><u>A</u><u>}   \\  \\  =  &gt;  \sqrt{1 - ( \frac{3}{5} ) {}^{2} }  =   &gt;  \sqrt{1 -  \frac{9}{25} }  \\  \\  =  &gt;   \sqrt{ \frac{16}{25} }  =  &gt;  \frac{4}{5 }  \\  \\  =  &gt; cos \: </u><u>A</u><u> =  \frac{4}{5}

tan A

 =  &gt; tan \:A =  \frac{sinA}{cosA}  \\  \\  =  &gt;  \frac{ \frac{ \frac{3}{5} }{4} }{5}  \\  \\  =  &gt;  \frac{3}{5}  \times  \frac{5}{4}  =  &gt;   \frac{3}{4}  \\  \\  =  &gt; tan \: A =  \frac{3}{4}

Hope it helps ☺️

Similar questions