Hey
If x = 1 + √2 , find x² + 1/x²
Answers
Here , x = 1 + √2
So x^2 = ( 1 + √2) ^2
x^2 = 1² + 2×1× √2 + (√2)^2
[ Taking Identity = ( a+b)² = a² + 2ab + b² ]
x^2 = 3+ 2 √2
We get x^2 ( x²) = 3+ 2 √2
So 1/x² = 1/3+ 2 √2
So values of x² + 1/x²
3+ 2 √2 + 1/ 3+ 2 √2
( 3+ 2 √2 )² + 1 / 3+ 2 √2
= 9+ 2×3× 2√2 + 8 + 1 / 3+ 2 √2
[ Taking Identity = ( a+b)² = a² + 2ab + b² ]
= 18 + 12√2 / 3+ 2 √2
= 6( 3+ 2√2 ) / 3+ 2 √2
= 6
( SEE the attachment also if you have any doubt regarding this )
:)
Answer:
Here , x = 1 + √2
So x^2 = ( 1 + √2) ^2
x^2 = 1² + 2×1× √2 + (√2)^2
[ Taking Identity = ( a+b)² = a² + 2ab + b² ]
x^2 = 3+ 2 √2
We get x^2 ( x²) = 3+ 2 √2
So 1/x² = 1/3+ 2 √2
So values of x² + 1/x²
3+ 2 √2 + 1/ 3+ 2 √2
( 3+ 2 √2 )² + 1 / 3+ 2 √2
= 9+ 2×3× 2√2 + 8 + 1 / 3+ 2 √2
[ Taking Identity = ( a+b)² = a² + 2ab + b² ]
= 18 + 12√2 / 3+ 2 √2
= 6( 3+ 2√2 ) / 3+ 2 √2
= 6
( SEE the attachment also if you have any doubt regarding this )
:)