Hey mate
help me plz
Attachments:
Answers
Answered by
10
Hey!
Q If x+y+z=π, prove that:
cot x/2+ cot y/2 +cot z/2=cot x/2 cot y/2 cot z/2
Given: x+y+z=π⇒x2+y2+z2=π2
⇒x2+y2=π2−z2Taking tan on both sides, we gettan(x2+y2)=tan(π2−z2)
⇒tan(x2+y2)=cot(z2)
[∵tan(π2−A)=cotA]
⇒tanx2+tany21−tanx2tany2=cot(z2)
[∵tan(A+B)=tanA+tanB1−tanA tanB]
⇒1cotx2+1coty21-1cotx2×1coty2=cot(z2)
⇒coty2+cotx2cotx2×coty2−1=cot(z2)
⇒coty2+cotx2=cotx2×coty2×cot(z2)−cot(z2)
⇒cotx2+coty2+cot(z2)=cotx2×coty2×cot(z2)
Hope this helps ^_^
Q If x+y+z=π, prove that:
cot x/2+ cot y/2 +cot z/2=cot x/2 cot y/2 cot z/2
Given: x+y+z=π⇒x2+y2+z2=π2
⇒x2+y2=π2−z2Taking tan on both sides, we gettan(x2+y2)=tan(π2−z2)
⇒tan(x2+y2)=cot(z2)
[∵tan(π2−A)=cotA]
⇒tanx2+tany21−tanx2tany2=cot(z2)
[∵tan(A+B)=tanA+tanB1−tanA tanB]
⇒1cotx2+1coty21-1cotx2×1coty2=cot(z2)
⇒coty2+cotx2cotx2×coty2−1=cot(z2)
⇒coty2+cotx2=cotx2×coty2×cot(z2)−cot(z2)
⇒cotx2+coty2+cot(z2)=cotx2×coty2×cot(z2)
Hope this helps ^_^
Anonymous:
nd game ka kya hoga?
Answered by
2
Answer:
Step-by-step explanation:
Given , prove that:
Similar questions