Math, asked by ronitgupta143, 11 months ago

hey mate here is ur question


prove this ​

Attachments:

Answers

Answered by rishu6845
17

To prove ---->

 \dfrac{sinx - sin3x}{ {sin}^{2}x -  {cos}^{2}x  } \:  = 2 \: sinx

Concept used ---->

1)

sin3x = 3 \: sinx \:  -  \: 4 \:  {sin}^{3} x

2)

 {cos}^{2} x \:  = 1 \:  -  {sin}^{2} x

Proof ---> LHS

 =  \dfrac{sinx \:  -  \: sin3x}{ {sin}^{2} x -  {cos}^{2}x }

 =  \dfrac{sinx \:  - (3 \: sinx \:  - 4 {sin}^{3} x)}{ {sin}^{2}x \:  - ( \: 1 \:  -  {sin}^{2}x \: )  }

 =  \dfrac{sinx \:  - 3sinx \:  + 4 {sin}^{3}x }{ {sin}^{2} x \:  - 1 \:  +  {sin}^{2}x }

 =  \dfrac{4 {sin}^{3}x \:  -  \: 2sinx \:  }{2 {sin}^{2}x \:  - 1 }

 = \dfrac{2 \: sinx \: ( \: 2 {sin}^{2} x \:  -  \: 1)}{( \: 2 {sin}^{2}x \:  -  \: 1  \: )}

( \: 2 {sin}^{2} x \:  -  \: 1 \: ) \: is \: cancel \: out \: from \: numerator \: and \: denominator

 = 2 \: sinx

= RHS

Answered by Anonymous
13

{\boxed{\mathtt{\green{To \: Prove}}}}

 \frac{ \sin(x) -  \sin(3x)  }{ { \sin(x) }^{2}  -  { \cos(x) }^{2} }  = 2 \sin(x)  \\

{\boxed{\mathtt{\green{Proof}}}}

\mathtt{LHS}

 =  \frac{ \sin(x) -  \sin(3x)  }{ { \sin(x)  }^{2} -  { \cos(x) }^{2}  }  \\

➾ Some identities that we'll use in its solution are :-

 >  \:  \sin(c)  -  \sin(d)  = 2 \cos( \frac{c + d}{2} ). \sin( \frac{c - d}{2} )   \\

 >  \:  \cos(2x)  = 2 { \cos(x) }^{2}  - 1 \\

 >  \:  \cos(2x)  = 1 - 2 { \sin(x) }^{2}  \\

➾ Now using these in our LHS .

 =  \:  \frac{2 \cos( \frac{x + 3x}{2} ) . \sin( \frac{x - 3x}{2} ) }{ \frac{1 -  \cos(2x) }{2}  -  \frac{1 +  \cos(2x) }{2} }  \\

 =  \:  \frac{2 \cos(2x) . \sin( - x) }{ \frac{1 -  \cos(2x) - 1 -  \cos(2x)  }{2} }  \\

 =  \:  \frac{ - 2 \cos(2x) . \sin(x) }{ \frac{ - 2 \cos(2x) }{2} }  \\

 =  \:  \frac{2 \cos(2x). \sin(x)  }{ \cos(2x) }  \\

  \boxed{=  \: 2 \:  \sin(x) }

\mathtt{\: LHS\: =\: RHS}

Hence proved

Similar questions