Math, asked by PopularAnswerer01, 2 months ago

Hey mate
Here is your Question in the above attachment.

Copying from web ❎

Irrelevant Answers ❎

Good Explanation ✅

With Proper Steps ✅

Attachments:

Answers

Answered by saanvigrover2007
93

2.

 \sf {\mapsto  \frac{2a}{ {a}^{2}  - 4 {x}^{2} } +  \frac{1}{2 {x}^{2}  + 6x - ax - 3a}   \left( x +  \frac{3x - 6}{x - 2} \right)} \\

 \sf{ \mapsto   \frac{2a}{ {a}^{2} - 4 {x}^{2}   } +  \frac{1}{2 {x}^{2} + 6x - ax - 3a }   \left( x +  \frac{3 \cancel{(x - 2)}}{ \cancel{x - 2}} \right) } \\

\sf{ \mapsto   \frac{2a}{ {a}^{2} - 4 {x}^{2}   } +  \frac{1}{2 {x}^{2} + 6x - ax - 3a }   \left( x +  3\right) } \\

 \sf{ \mapsto  \frac{2a}{ {a}^{2} - 4 {x}^{2}   }   +  \frac{x + 3}{2 {x}^{2} + 6x - ax - 3a } } \\

 \sf \footnotesize \green{  Multiply  \:  \frac{x + 3}{( - x - 3)( - 2x + a)} \:  \:  by \:  \frac{2x + a}{2x + a} } \\

 \sf{ \mapsto  \frac{2a( - x - 3)}{( - x - 3)( - 2x + a)(2x + a)} +  \frac{(x + 3)(2x + a)}{( - x - 3)( - 2x + a)(2x + a)}  } \\

 \sf{ \mapsto  \frac{2a( - x - 3) + (x + 3)(2x + a)}{( - x - 3)( - 2x + a)(2x + a)} } \\

 \sf{ \mapsto   \frac{- xa - 3a + 6x + 2 {x}^{2}}{( - x - 3)( - 2x - a)(2x + a)} } \\

 \sf{ \mapsto  \frac{ \cancel{( - x - 3)( - 2x + a)}}{ \cancel{( - x - 3)( - 2x + a)}(2x + a)} } \\

 \sf \large \pink{ \mapsto  \frac{1}{2x + a} } \\

3.

 \sf{ \mapsto  \left(  \frac{2a + 10}{3a - 1} +  \frac{130 - a}{1 - 3a}  +  \frac{30}{a}  - 3 \right) \times  \frac{3 {a}^{3}  + 8 {a}^{2}  - 3a}{1 -  \frac{1}{4} {a}^{2}  } } \\

 \sf{ \mapsto \frac{(3 {a}^{3} + 8 {a}^{2} - 3a  ) \left( \frac{130 - a}{1 -  3a} +  \frac{30}{a} +  \frac{2a + 10}{3a - 1}    - 3\right)}{1 -   \frac{ {a}^{2} }{4} }  } \\

 \sf \footnotesize \green{After  \: solving  \: the  \: numerator,}

 \sf{ \mapsto  \frac{ 3( - a - 2)(a + 3)(2a + 5)}{1 -  \frac{1}{4} {a}^{2}  } } \\

 \sf{ \mapsto  \frac{ 3 \cancel{( - a - 2)}(a + 3)(2a + 5)}{\frac{1}{4} (a  -  2) \cancel{( - a - 2)} } } \\

\sf \large \pink{ \mapsto  \frac{ 3(a + 3)(2a + 5)}{\frac{1}{4} (a - 2) } } \\

4.

 \sf{ \mapsto  \frac{ {a}^{2}  -  {b}^{2} }{a - b} -  \frac{ {a}^{3}  -  {b}^{3} }{ {a}^{2}  -  {b}^{2} }  } \\

\sf{ \mapsto  \frac{ (a + b) \cancel{( a-b ) }}{ \cancel{a - b}} -  \frac{ {a}^{3}  -  {b}^{3} }{ {a}^{2}  -  {b}^{2} }  } \\

\sf{ \mapsto  (a + b)  -  \frac{ {a}^{3}  -  {b}^{3} }{ {a}^{2}  -  {b}^{2} }  } \\

\sf{ \mapsto  (a + b)  -  \frac{  \cancel{( a-b )}( {a}^{2} +ab  +  {b}^{2} )  }{(a + b) \cancel{(a -b )}}  } \\

 \sf{ \mapsto a + b -  \frac{ {a}^{2} + ab +  {b}^{2}  }{a + b} } \\

 \sf{ \mapsto  \frac{( a+ b)(a +b ) - ( {a}^{2}  +  ab+  {b}^{2} )}{ a+ b} } \\

 \sf{ \mapsto  \frac{( a+ b)^{2}- ( {a}^{2}  +  ab+  {b}^{2} )}{ a+ b} } \\

\sf{ \mapsto  \frac{ {a}^{2}  + ab + ab +  {b}^{2}  -  {a}^{2} - ab -  {b}^{2}  }{ a+ b} } \\

 \sf {\large {\pink{ \mapsto  \frac{ab}{a + b} }}} \\

 \\

 \hookrightarrow \textsf{Identities used in 4th part}

  \sf{ \implies(a + b)^{2} =  {a}^{2} +  2ab+  {b}^{2}   } \\ \sf{ \implies(a  -  b)^{2} =  {a}^{2}  -  2ab+  {b}^{2}   }

\sf{ \implies {a}^{3}   -  {b}^{3}  = ( a- b)( {a}^{2} +  ab+  {b}^{2}  ) }

 \sf{ \implies (a - b)(a + b) =  {a}^{2}  -  {b}^{2} }

 \hookrightarrow \textsf{Note :}

 \textsf{Swipe to left to view full sentence/equation }

 \\

 \sf  \color{azure}\fcolorbox{pink}{black}{  \:    \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: @Saanvigrover2007 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:    \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:}

Similar questions