Math, asked by NewBornTigerYT, 10 months ago

Hey Mate, I am strucked in this problem between. Hopes that you can solve it with explanation.
<font color=white>
(thank you) ​

Attachments:

Answers

Answered by Anonymous
20

Answer:

- 2

Step-by-step explanation:

Given :

  \sf \dfrac{ - 3}{ \sqrt{3}  +  \sqrt{2} }  -  \dfrac{3 \sqrt{2} }{ \sqrt{6} +  \sqrt{3}  }  +  \dfrac{4 \sqrt{3} }{ \sqrt{6} +  \sqrt{2}  }  = a \sqrt{2}  + b \sqrt{3}

Rationalising the denominator of each term of LHS

\Rightarrow \sf \dfrac{ - 3( \sqrt{3} -  \sqrt{2}  )}{ (\sqrt{3}  +  \sqrt{2})( \sqrt{3}  -  \sqrt{2}  )}  -  \dfrac{3 \sqrt{2}( \sqrt{6}   -  \sqrt{3} )}{ (\sqrt{6} +  \sqrt{3})( \sqrt{6}   -  \sqrt{3} )}  +  \dfrac{4 \sqrt{3}( \sqrt{6}  - \sqrt{2} ) }{( \sqrt{6} +  \sqrt{2} )( \sqrt{6} -  \sqrt{2})  }  = a \sqrt{2}  + b \sqrt{3}

Using identity (x + y)(x - y) = x² - y² in denominators

\Rightarrow \sf \dfrac{ - 3 \sqrt{3}  + 3 \sqrt{2}  }{ (\sqrt{3} ) ^{2}   -  ( \sqrt{2})^{2} }  -  \dfrac{3 \sqrt{12} -  3\sqrt{6} }{ (\sqrt{6} )^{2}  -  (\sqrt{3}) ^{2} }  +  \dfrac{4 \sqrt{18} - 4\sqrt{6}  }{( \sqrt{6})^{2}  -  (\sqrt{2})^{2}   }  = a \sqrt{2}  + b \sqrt{3}

\Rightarrow \sf \dfrac{ - 3 \sqrt{3}  + 3 \sqrt{2}  }{3 - 2}  -  \dfrac{3 \sqrt{12} -  3\sqrt{6} }{6 - 3 }  +  \dfrac{4 \sqrt{18} - 4\sqrt{6}  }{6 - 2}  = a \sqrt{2}  + b \sqrt{3}

\Rightarrow \sf - 3 \sqrt{3}  + 3 \sqrt{2}  -  \dfrac{3( \sqrt{12} -  \sqrt{6} )}{3 }  +  \dfrac{4( \sqrt{18} - \sqrt{6} ) }{4}  = a \sqrt{2}  + b \sqrt{3}

⇒ - 3√3 + 3√2 - ( √12 - √6 ) + √18 - √6 = a√2 + b√3

⇒ - 3√2 - √12 + √6 + √18 - √6 = a√2 + b√3

⇒ - 3√2 - √( 4 × 3 ) + √( 9 × 2 ) = a√2 + b√3

Using √xy = √x × √y

⇒ - 3√2 - ( √4 × √3 ) + ( √9 × √2 ) = a√2 + b√3

⇒ - 3√2 - 2√3 + 3√2 = a√2 + b√3

⇒ 0√2 + - 2√3 = a√2 + b√3

Comparing on both sides

  • a = 0
  • b = - 2

a + b = 0 + ( - 2 ) = 0 - 2 = - 2

Therefore the value of a + b is - 2.

Similar questions