Math, asked by Anonymous, 1 year ago

hey mate prove it please ​

Attachments:

Answers

Answered by Anonymous
5

SOLUTION:-

Given:

⚫x=cy +bz

⚫y=az+ cx

⚫z=bx + ay

To prove:

  \frac{ {x}^{2} }{1 -  {a}^{2} } =  \frac{ {y}^{2} }{1 -  {b}^{2} }  =  \frac{ {z}^{2} }{1 -  {c}^{2} }

Proof:

Putting the value of x in y;

y = az + c(cy + bz) \\  \\ y = z(a + bc) +  {c}^{2y}  \\  \\ y(1 -  {c}^{2} ) = z(a + bc) \\  \\  (a + bc) =  \frac{y(1 -  {c}^{2} )}{z} .............(1)

Similarly, putting equation (1) in z, we get;

(a + bc) =  \frac{z(1 -  {b}^{2} )}{y}................(2)

Equating equation (1) & (2), w get;

 \frac{ {y}^{2} }{(1 -  {b}^{2} )}  =  \frac{ {z}^{2} }{(1 -  {c}^{2} )} ...............(3)

Similarly, by solving z & x by using value of y, we get;

 \frac{ {x}^{2} }{(1 -  {a}^{2}) }  =  \frac{ {z}^{2} }{(1 -  {c}^{2} )} ..............(4)

Equation by (3) & (4), we get;

 =  >  \frac{ {x}^{2} }{(1 -  {a}^{2} )} =   \frac{ {y}^{2} }{(1 -  {b}^{2}) }  =  \frac{ {z}^{2} }{(1 -  {c}^{2} )}

Hence,

Proved.

Hope it helps ☺️

Answered by Anonymous
4

Let us eliminate z from the twoequations as follows

X= cy + by

x= cy + b(bx+ay)

x= cy+b²x+aby

And now by multiplying each term ofthe x so we get ..

x ^{2} = cxy + b ^{2} x ^{2} + abxy.........(1)x2=cxy+b2x2+abxy.........(1)

And similarly

y = az + bxy=az+bx

y = a(bx + ay) + cxy=a(bx+ay)+cx

y = abx + a^{2} y + cxy=abx+a2y+cx

And by multiplying each term of y weget

y ^{2} = abxy + a ^{2} y^{2} + cxy..........(2)y2=abxy+a2y2+cxy..........(2)

Subtracting 2 from 1 we get

x²-y² = b²x²-a²y²

x²-b²x²=y²-a²y

x²(1-b²) = y²(1-a²)

\frac{x ^{2} }{1 - a ^{2} } = \frac{b ^{2} }{1 - b ^{2} }1−a2x2=1−b2b2

\begin{lgathered}similarly \: we \: can \: eliminate \: y \: nd \: z \: from \: the \: equations \: to \: \: get \: \\ \\ \\\end{lgathered}similarlywecaneliminateyndzfromtheequationstoget</p><p>\frac{y ^{2} }{1 - b^{2} } = \frac{z ^{2} }{1 - c^{2} }1−b2y2=1−c2z2

Hence proved

\frac{x ^{2} }{1 - a ^{2} } = \frac{y ^{2} }{1 - b ^{2} } = \frac{z ^{2} }{1 - c ^{2} }1−a2x2=1−b2y2=1−c2z2

&lt;marquee&gt;Broken

Similar questions