Math, asked by CaptainBrainly, 1 year ago

Hey Mates!


( 6,6 ) ( h,0 ) ( 0, k ) are collinear then find 1/h + 1/k


Disclaimer - No irrelevant answers.


siddhartharao77: is it 1/6?

Answers

Answered by siddhartharao77
36
Let the given points be A(6,6), B(h,0) and C(0,k).

Here x1 = 6 and y1 = 6, 

         x2 = h and y2 = 0

         x3 = 0 and y3 = k.


We know that Slope a line m = y2 - y1/x2 - x1.

Slope of AB:

(x1,y1) = (6,6) and (x2,y2) = (h,0).

= \ \textgreater \ \frac{0 - 6}{h - 6}

= \ \textgreater \ \frac{-6}{h - 6}


Slope of BC:

(x1,y1) = (h,0) and (x2,y2) = (0,k).

= \ \textgreater \ m = \frac{k - 0}{0 - h}

= \ \textgreater \ m = \frac{k}{-h}

Now,

Slope of AB = slope of BC

 = \ \textgreater \  \frac{-6}{h-6} =  \frac{k}{-h}

= \ \textgreater \  6h = kh - 6k

= \ \textgreater \  6h + 6k = kh

= \ \textgreater \  6(h + k) = kh

 \frac{1}{h} +  \frac{1}{k} =  \frac{1}{6}



Hope this helps!

siddhartharao77: is my answer correct?
CaptainBrainly: yes bro
siddhartharao77: Thanks
Answered by Anonymous
19

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\therefore let\:the\:givencollinear\:be,

\sf\dashrightarrow A(6,6)= x_1=6 , y_1=6

\sf\dashrightarrow B(h,0)= x_2=h,y_2=0

\sf\dashrightarrow C(0,k)=x_3=0,y_3=k

✯.FORMULA IN USE ,

\large{\boxed{\bf{\star\:\:m= \dfrac{y_2-y_1}{x_2-x_1}\:\: \star }}}

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow the\:value\:of\:\dfrac{1}{k} + \dfrac{1}{h}

\large\underline\bold{SOLUTION,}

✯SIDE AB,

\sf\dashrightarrow A(6,6)= x_1=6 , y_1=6

\sf\dashrightarrow B(h,0)= x_2=h,y_2=0

\sf\therefore m= \dfrac{y_2-y_1}{x_2-x_1}

\sf\implies \dfrac{0 - 6}{h - 6}

\sf\implies \dfrac{-6}{h - 6}

\rm{\boxed{\bf{\star\:\: \dfrac{-6}{h - 6} \:\: \star }}}

✯SIDE BC

\sf\dashrightarrow B(h,0)= x_2=h,y_2=0

\sf\dashrightarrow C(0,k)=x_3=0,y_3=kp

\sf\therefore m= \dfrac{y_2-y_1}{x_2-x_1}

\sf\implies \dfrac{k - 0}{0 - h}

\sf\implies \dfrac{k}{-h}

\rm{\boxed{\bf{\star\:\: \dfrac{k}{-h}\:\: \star }}}

✯SIDE AC,

\sf\dashrightarrow A(6,6)= x_1=6 , y_1=6

\sf\dashrightarrow C(0,k)=x_3=0,y_3=k

\sf\therefore m= \dfrac{y_2-y_1}{x_2-x_1}

\sf\implies \dfrac{0-6}{k-6}

\sf\implies \dfrac{-6}{k-6}

\rm{\boxed{\bf{\star\:\: \dfrac{-6}{k-6}\:\: \star }}}

NOW,

SIDE AB = SIDE BC

\sf\implies \dfrac{-6}{h-6} = \dfrac{k}{-h}

\sf\implies (-6) \times  (-h) = k \times (h-6)

\sf\implies 6h= kh-6k

\sf\implies 6h+6k= kh

\sf\implies 6(h+k)=kh

\sf\implies h+k= \dfrac{kh}{6}

\sf\implies h+k= \dfrac{1}{6} \times kh

\sf\implies \dfrac{h+k}{kh} = \dfrac{1}{6}

\sf\implies \dfrac{h}{kh} + \dfrac{k}{kh}= \dfrac{1}{6}

\sf\implies \dfrac{\cancel{h}}{k \cancel{h}} + \dfrac{\cancel{k}}{\cancel{k}h}= \dfrac{1}{6}

\sf\implies \dfrac{1}{k} + \dfrac{1}{h} = \dfrac{1}{6}

\large{\boxed{\bf{\star\:\: \dfrac{1}{k} + \dfrac{1}{h} = \dfrac{1}{6} \:\: \star }}}

\large\underline\bold{the\:value\:of\:\dfrac{1}{k} + \dfrac{1}{h} = \dfrac{1}{6} }

______________________________

Similar questions