Hey maths aryabhattas !! Plz tell me what is the formula of cos(A+B)/cos(A-B) .....plz simplify it
Answers
__________________________
↪cos(A+B) = cosA × cosB-sinA×sinB
↪cos(A-B) = cosA×cosB + sinA ×sinB
↪cos(A±B) = cosA×cosB ±sinA×sinB
↪cos(A+B) = cosA×cosB ± sinA×sinB
↪cos(A+B)/cos(A-B)
↪[cosA×cosB-sinA×sinB]/[cosA×cosB+sinA×sinB]
↪[{cosA×cosB-sinA×sinB}/{cosA×cosB}]/[{cosA×cosB)]
↪[(cosA×cosB/cosA×cosB)-(sinA×sinB/cosA×cosB)]/[{1-(sinA×sinB/cosA×cosB)]}/[{1+(sinA×sinB/cosA×cosB)}]
↪[1-tanA×tanB]/[1+tanA×tanB]
__________________________
Question :-
- Simplify cos(A+B)/cos(A-B) .
Formula used :-
- cos(A + B) = cosA*cosB - sinA*sinB
- cos(A - B) = cosA*cosB + sinA*sinB
we can Learn Them as ,
→ cos(A ± B) = cosA*cosB ∓ sinA*sinB
Now, Putting Both Formula we get :-
→ cos(A + B) / cos(A - B)
→ [ cosA*cosB - sinA*sinB ] / [ cosA*cosB + sinA*sinB ]
Now, Divide Both Numerator & Denominator by
cosA*cosB , we get,
→ [ { cosA*cosB - sinA*sinB } / ( cosA *cosB ) ] / [ { cosA*cosB + sinA*sinB } / ( cosA *cosB ) ]
→ [ (cosA*cosB/cosA*cosB) - (sinA*sinB/cosA*cosB) ] / [ { (cosA*cosB/cosA*cosB) + (sinA*sinB/cosA*cosB) ]
→ [ { 1 - (sinA*sinB/cosA*cosB) ] / [ { 1 + (sinA*sinB/cosA*cosB) ]
Now, using sinA/cosA = tanA , we get,