Math, asked by Abdulrazak182, 10 months ago

hey medha333333 solve this ​

Attachments:

Answers

Answered by BendingReality
13

Question :

\displaystyle \sf x=\cos^3 \theta \ \ , \ y=\sin^3 \theta \ then \ \sqrt{ 1 + \left(\frac{dy}{dx}\right)^2} \\

Answer:

\displaystyle \sf \sqrt{ 1 + \left(\frac{dy}{dx}\right)^2}=\sec \theta \\

Step-by-step explanation:

Given :

\displaystyle \sf x=\cos^3 \theta \\ \\

Diff. w.r.t. θ :

\displaystyle \sf \longrightarrow \frac{dx}{d \theta} =- \sin \theta. \cos^2 \theta \\ \\

Also we have :

\displaystyle \sf y=\sin^3 \theta \\ \\

Diff. w.r.t. θ :

\displaystyle \sf \longrightarrow \frac{dy}{d \theta} = \sin^2 \theta. \cos \theta \\ \\

Now as we do in parametric function :

\displaystyle \sf \frac{dy}{dx} = \dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}  \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx} = \dfrac{\dfrac{dy}{d\theta}}{\dfrac{dx}{d\theta}}  \\ \\

Putting above values we get :

\displaystyle \sf \longrightarrow \frac{dy}{dx} = \frac{\sin^2 \theta.\cos \theta}{-\sin \theta. \cos^2 \theta} \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx} = -\frac{\sin \theta}{ \cos \theta} \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dx} = - \tan \theta \\ \\

Squaring on both side we get :

\displaystyle \sf \longrightarrow \left(\frac{dy}{dx}\right)^2= \left(- \tan \theta\right)^2 \\ \\

\displaystyle \sf \longrightarrow \left(\frac{dy}{dx}\right)^2= \left(\tan^2 \theta\right) \\ \\

Adding + 1 both side :

\displaystyle \sf \longrightarrow 1 + \left(\frac{dy}{dx}\right)^2= 1 + \left(\tan^2 \theta\right) \\ \\

Now squaring root of that :

\displaystyle \sf \longrightarrow \sqrt{ 1 + \left(\frac{dy}{dx}\right)^2}= \sqrt{1 + \left(\tan^2 \theta\right)} \\ \\

We know :

\displaystyle \sf \sec^2 \theta -\tan^2 \theta=1 \\ \\

\displaystyle \sf \longrightarrow \sec^2 \theta = 1 + \tan^2 \theta \\ \\

\displaystyle \sf \longrightarrow \sec \theta = \sqrt{1 + \tan^2 \theta} \ ...(i) \\ \\

Using ( i ) we get :

\displaystyle \sf \longrightarrow \sqrt{ 1 + \left(\frac{dy}{dx}\right)^2}=\sec \theta \\ \\

Therefore , we get required answer.


Anonymous: Awesome !
Answered by MarshmellowGirl
15

 \large \underline{ \red{ \boxed{ \bf \orange{Required \: Answer}}}}

Attachments:
Similar questions