Math, asked by LustyBoy, 6 months ago

Hey MODERATORS/STARS CHALLENGE !!

Solve this if u can..
Find the correct option for the
Integration of [1+x- (1/x)]e^(x+ 1/x) dx

A) (x+1)e^(x+ 1/x) + c
B) xe^(x+ 1/x ) + c
C) (x - 1)e^(x+ 1/x) + c
D) -xe^(x+ 1/x ) + c


No Spam​

Answers

Answered by amansharma264
13

EXPLANATION.

 \sf \:  \implies \:  \int \:  \bigg(1  + x -  \dfrac{1}{x}  \bigg) {}^{e {}^{ \bigg(x +  \frac{1}{x}  \bigg)} } dx

As we know that,

 \sf  \implies \:let \: we \: assume \: that \\  \\ \sf  \implies \:xe {}^{ \bigg(x +  \dfrac{1}{x} \bigg) }   = t \\  \\ \sf  \implies \: \: differentiate \: w.r.t \:  \: x \:  \: we \: get \\  \\ \sf  \implies \: \frac{d}{dx} (uv) = u( \frac{dv}{dx} ) + v \: ( \frac{du}{dx} )

\sf  \implies \: \:  \bigg[xe {}^{ \bigg(x +  \dfrac{1}{x}  \bigg)}  \bigg(1 -  \dfrac{1}{ {x}^{2} }  \bigg) \:  +  \: e {}^{ \bigg(x +  \dfrac{1}{x}  \bigg)}(1)  \bigg]dx \:  = dt \\  \\  \sf \:  \implies \: e {}^{ \bigg(x +  \dfrac{1}{x} \bigg) }  \bigg[x \:  -  \dfrac{x}{ {x}^{2} }  +  1 \bigg]dx \:  = dt \\  \\  \sf \:  \implies \: e {}^{ \bigg(x +  \dfrac{1}{x} \bigg) }  \bigg[x -  \dfrac{1}{x}  + 1 \bigg]dx \:  = dt

 \sf \:  \implies \: e {}^{ \bigg(x +  \dfrac{1}{x} \bigg) }  \bigg[1 + x -  \dfrac{1}{x}  \bigg]dx \:  = dt

Put the value in equation, we get.

 \sf \:  \implies \:  \int \: dt \\  \\  \sf \:  \implies \: t \:  + c \\  \\  \sf \:  \implies \: put \: the \: value \:of \:  t \: in \: equation \: we \: get \\  \\  \sf \:  \implies \: xe {}^{ \bigg(x +  \dfrac{1}{x} \bigg) }  + c


AlluringNightingale: Amazing
Anonymous: Nicee as always
theaudre: help me please check my question
Answered by Asterinn
15

 \rm \longrightarrow \displaystyle \int \rm \bigg(1 + x -  \dfrac{1}{x} \bigg )  \large {e}^{x +  \frac{1}{x} }  \: dx

\rm \longrightarrow \displaystyle \int \rm \bigg(1 + x -  \dfrac{1}{x} \bigg )  \large {e}^{x } \:  {e}^{  \frac{1}{x} }  \: dx

\rm \longrightarrow \displaystyle \int \rm \bigg(   {e}^{  \frac{1}{x} } +   {e}^{  \frac{1}{x} } \:  x -  \dfrac{  {e}^{  \frac{1}{x} } }{x} \bigg )  \large {e}^{x }  \: dx

\rm \longrightarrow \displaystyle \int \rm \large {e}^{x }  \bigg(   {e}^{  \frac{1}{x} } +   {e}^{  \frac{1}{x} } \:  x -  \dfrac{  {e}^{  \frac{1}{x} } }{x} \bigg )  \: dx

\rm \longrightarrow \displaystyle \int \rm \large {e}^{x }  \bigg[ ({e}^{  \frac{1}{x} } \:  x) + \bigg(   {e}^{  \frac{1}{x} }  -  \dfrac{  {e}^{  \frac{1}{x} } }{x} \bigg )  \bigg] \: dx

Now , the above expression is of the form :-

∫ eˣ[ f(x) + f'(x) ] dx

 \rightarrow \rm  \dfrac{d( {e}^{ \frac{1}{x} } x)}{dx}   =  x \: \dfrac{d({e}^{ \frac{1}{x} })}{dx}  + {e}^{ \frac{1}{x}}\dfrac{d(  x)}{dx} \\  \\   \rm \: =  x \:  {e}^{ \frac{1}{x} } \dfrac{d({ \frac{1}{x} })}{dx}  +{e}^{ \frac{1}{x}} \\  \\   \rm \: =  x \:  {e}^{ \frac{1}{x} } \dfrac{d({  {x}^{ - 1}  })}{dx}  + {e}^{ \frac{1}{x}} \\  \\   \rm \: =   - x \:  {e}^{ \frac{1}{x} } \dfrac{ 1}{ {x}^{2} }  + {e}^{ \frac{1}{x}}\\  \\   \rm \: =   -  \:  {e}^{ \frac{1}{x} } \dfrac{ 1}{ {x}}  + {e}^{ \frac{1}{x}} \\  \\  \rm \: =     {e}^{ \frac{1}{x}}-  \:  \dfrac{ {e}^{ \frac{1}{x} }}{ {x}}

Now we know that :-

∫ eˣ[ f(x) + f'(x) ] dx = eˣ f(x) + K

\rm \longrightarrow \displaystyle \int \rm \large {e}^{x }  \bigg[ ({e}^{  \frac{1}{x} } \:  x) + \bigg(   {e}^{  \frac{1}{x} }  -  \dfrac{  {e}^{  \frac{1}{x} } }{x} \bigg )  \bigg]  \: dx= {e}^{x }({e}^{  \frac{1}{x} } \:  x) + c

\rm \longrightarrow \displaystyle   \rm \large x \: {e}^{  (x + \frac{1}{x}) } \:  + c

Answer :

Option (B) xe^(x+ 1/x ) + c is correct


AlluringNightingale: Awesome
Asterinn: Thank you
Anonymous: Perfecta :)
theaudre: help me please check. my mathematics
theaudre: check my question
Similar questions