Math, asked by Hakar, 1 year ago

Hey ! Please help me :D See the attachement :


#Moderator

Attachments:

Inflameroftheancient: Easy
Inflameroftheancient: Can I answer it? :D

Answers

Answered by Inflameroftheancient
15

Hey there!

Taking the left hand side or manipulating the left hand side to proceed further;

\bf{cos^2(x) + cos^2(x + \dfrac{\pi}{3}) + cos^2(x - \dfrac{\pi}{3})}

_________________________________________________

Using the following identity rule for cos that is,

\bf{cos(s - t) = cos(s)cos(t) + sin(s)sin(t)}

AND, Using the following identity rule for cos that is,

\bf{cos(s + t) = cos(s)cos(t) - sin(s)sin(t)}

_________________________________________________

\bf{\therefore \quad cos^2(x) + (cos(x)cos(\dfrac{\pi}{3}) - sin(x)sin(\dfrac{\pi}{3}))^2 + (cos(x)cos(\dfrac{\pi}{3}) + sin(x)sin(\dfrac{\pi}{3}))^2}

_________________________________________________

Apply the following trivial identities;

\bf{First \: trivial \: identity: \: cos(\dfrac{\pi}{3}) = \dfrac{1}{2}}

\bf{Second \: trivial \: identity: \: sin(\dfrac{\pi}{3}) = \dfrac{\sqrt{3}}{2}}

_________________________________________________

\bf{\therefore \quad cos^2(x) + (\dfrac{1}{2} cos(x) - \dfrac{\sqrt{3}}{2} sin(x))^2 + (\dfrac{1}{2} cos(x) + \dfrac{\sqrt{3}}{2} sin(x))^2}

_________________________________________________

\bf{cos^2(x) + (\dfrac{1}{2} cos(x))^2 - 2 \times \dfrac{1}{2} cos(x) \dfrac{\sqrt{3}}{2} sin(x) + (\dfrac{\sqrt{3}}{2} sin(x))^2 + (\dfrac{1}{2} cos(x))^2} \bf{+ 2 \times \dfrac{1}{2} cos(x) \dfrac{\sqrt{3}}{2} sin(x) + (\dfrac{\sqrt{3}}{2} sin(x))^2}

_________________________________________________

\bf{cos^2(x) + \dfrac{1}{4} cos^2(x) - \dfrac{\sqrt{3}}{2} cos(x)sin(x) + \dfrac{3}{4} sin^2(x)} \bf{+ \dfrac{1}{4} cos^2(x) + \dfrac{\sqrt{3}}{2} cos(x)sin(x) + \dfrac{3}{4} sin^2(x)}

_________________________________________________

\bf{\dfrac{3}{2} cos^2(x) + \dfrac{3}{4} sin^2(x) \dfrac{3}{4} sin^2(x)}

_________________________________________________

\bf{\dfrac{3}{2} cos^2(x) + (\dfrac{3}{4} + \dfrac{3}{4}) sin^2(x)}

_________________________________________________

\bf{\dfrac{3}{2} cos^2(x) + \dfrac{6}{4} sin^2(x)}

_________________________________________________

\bf{\dfrac{3}{2} cos^2(x) + \dfrac{3}{2} sin^2(x)}

_________________________________________________

\bf{\dfrac{3 cos^2(x)}{2} + \dfrac{3 sin^2(x)}{2}}

_________________________________________________

\bf{\dfrac{3 cos^2(x) + 3 sin^2(x)}{2}}

_________________________________________________

Since,  sin^2(x) = 1 - cos^2(x).

_________________________________________________

\bf{\therefore \quad \dfrac{(1 - cos^2(x)) \times 3 + 3 cos^2(x)}{2}}

_________________________________________________

\bf{\therefore \quad \dfrac{3(1 - cos^2(x)) + 3 cos^2(x)}{2}}

_________________________________________________

\bf{\therefore \quad \dfrac{3 - 3 cos^2(x) + 3 cos^2(x)}{2}}

_________________________________________________

\boxed{\bf{\underline{Hence \: Proved, \: \dfrac{3}{2}}}}

_________________________________________________

Which is the required solution or the final proof for this type of query.

Hope it helps you and clears your doubt for proving the two trigonometric identities !!!!!


Hakar: It's difficult to choose the brainliest :D
Inflameroftheancient: Yeah .. ikr xD
siddhartharao77: Nice answer !
Inflameroftheancient: THNX BRO !
MOSFET01: Nice
Inflameroftheancient: Thnx bro Harshit
smartyAnushka: nice
Inflameroftheancient: Thnx Anushka Sis
smartyAnushka: np
Answered by siddhartharao77
9

Given Equation is cos^2x + cos^2(x + π/3) + cos^2(x - π/3).

⇒ cos^2x + [cos(x + π/3)]^2 + [cos(x - π/3)]^2

We know that cos (a + b) =  cos a cos b - sin a sin b

We know that cos(a - b) = cos a cos b + sin a sin b.

⇒ cos^2x + [cos x * cos π/3 - sin x * sin π/3)^2 + [cos x * cos π/3 + sin x * sin π/3]^2

⇒ cos^2x + [cos x * (1/2) - sin x * (√3/2)]^2 + [cos x * (1/2) + sin x * (√3/2)]^2

We know that (a - b)^2 = a^2 + b^2 - 2ab.

We know that (a + b)^2 = a^2 + b^2 + 2ab.

⇒ cos^2x + (1/4)[cos^2x + 3 sin^2x - 2√3 sinx cosx] + (1/4)[cos^2x + 3 sin^2x + 2√3 sinx cosx ]

⇒ cos^2x + [cos^2(x/4) + 3 sin^2(x/4)] + (cos^2(x/4) + (3/4) sin^2x]

⇒ cos^2x + cos^2(x/4) + (3/4) sin^2x + cos^2(x/4) + (3/4) sin^2x]

Rearrange the terms, we get

⇒ cos^2x + cos^2(x/4) + cos^2(x/4) + (3/4)sin^2x + (3/4)sin^2x

⇒ cos^2x[1 + 1/4 + 1/4] + sin^2x[3/4 + 3/4]

⇒ cos^2x[3/2] + sin^2x[3/2]

⇒ (3/2)[sin^2x + cos^2x]

⇒ (3/2)[1]

(3/2).



Hope it helps!


Inflameroftheancient: AWESOME ANSWER !!!
siddhartharao77: Thank you!
Hakar: Thank you a lot :)
siddhartharao77: welcome
MOSFET01: Nice :)
siddhartharao77: thanks
Similar questions