Hey ! Please help me :D See the attachement :
#Moderator
Answers
Hey there!
Taking the left hand side or manipulating the left hand side to proceed further;
_________________________________________________
Using the following identity rule for cos that is,
AND, Using the following identity rule for cos that is,
_________________________________________________
_________________________________________________
Apply the following trivial identities;
_________________________________________________
_________________________________________________
_________________________________________________
_________________________________________________
_________________________________________________
_________________________________________________
_________________________________________________
_________________________________________________
_________________________________________________
_________________________________________________
Since, sin^2(x) = 1 - cos^2(x).
_________________________________________________
_________________________________________________
_________________________________________________
_________________________________________________
_________________________________________________
Which is the required solution or the final proof for this type of query.
Hope it helps you and clears your doubt for proving the two trigonometric identities !!!!!
Given Equation is cos^2x + cos^2(x + π/3) + cos^2(x - π/3).
⇒ cos^2x + [cos(x + π/3)]^2 + [cos(x - π/3)]^2
We know that cos (a + b) = cos a cos b - sin a sin b
We know that cos(a - b) = cos a cos b + sin a sin b.
⇒ cos^2x + [cos x * cos π/3 - sin x * sin π/3)^2 + [cos x * cos π/3 + sin x * sin π/3]^2
⇒ cos^2x + [cos x * (1/2) - sin x * (√3/2)]^2 + [cos x * (1/2) + sin x * (√3/2)]^2
We know that (a - b)^2 = a^2 + b^2 - 2ab.
We know that (a + b)^2 = a^2 + b^2 + 2ab.
⇒ cos^2x + (1/4)[cos^2x + 3 sin^2x - 2√3 sinx cosx] + (1/4)[cos^2x + 3 sin^2x + 2√3 sinx cosx ]
⇒ cos^2x + [cos^2(x/4) + 3 sin^2(x/4)] + (cos^2(x/4) + (3/4) sin^2x]
⇒ cos^2x + cos^2(x/4) + (3/4) sin^2x + cos^2(x/4) + (3/4) sin^2x]
Rearrange the terms, we get
⇒ cos^2x + cos^2(x/4) + cos^2(x/4) + (3/4)sin^2x + (3/4)sin^2x
⇒ cos^2x[1 + 1/4 + 1/4] + sin^2x[3/4 + 3/4]
⇒ cos^2x[3/2] + sin^2x[3/2]
⇒ (3/2)[sin^2x + cos^2x]
⇒ (3/2)[1]
⇒ (3/2).
Hope it helps!