Math, asked by Anonymous, 1 year ago

Hey!
Please solve this question.

solve the equation for x: (x + 3)/(x - 2) - (1 - x)/x = 17/x

No Spams plzz....

Attachments:

Answers

Answered by madhura20
1
\huge\boxed{\mathfrak{\fcolorbox{red}{skyblue}{Here \:is\:Ans}}}

 \frac{x + 3}{x - 2} - \frac{1 - x}{x} = \frac{17}{x}


 \frac{x + 3}{x - 2} - \frac{1 - x}{x} - \frac{17}{x} = 0



 \frac{x \times (x + 3) - (x - 2) \times (x - 1) - 17(x - 2)}{x \times (x - 2)} = 0



 \frac{x {}^{2} + 3x - (x - x {}^{2} - 2 + 2x) - 17 x + 34 }{x \times (x - 2)} = 0


❄Collect The Like Terms



 \frac{x {}^{2} - 3x - 3x + x {}^{2} + 2 - 17x + 34 }{x \times (x - 2)} = 0



 \frac{2x {}^{2} +2 - 17x + 34 }{x \times (x - 2)} = 0



 \frac{2x {}^{2} + 36 - 17x}{x \times (x - 2)} = 0



2x {}^{2} + 36 - 17x = 0

2x {}^{2} - 17x + 36 = 0



x = \frac{ - ( - 17 ) + - \sqrt{( - 17) {}^{2} - 4 \times 2 \times 36 } }{2 \times 2}



x = \frac{17 + - \sqrt{289 - 288} }{4}



x = \frac{17 + \sqrt{1} }{4}

 x = \frac{17 + - 1}{4}

means... \\ \\ \\ x = \frac{17 + 1}{4 } \\ \\ x = \frac{17 - 1}{4}


x1= \frac{9}{2 } \\ \\ x2 = 4


\mathcal{\orange{\bold{\star\:Madhura20}}}

Anonymous: Thanks:-)
madhura20: welcome ! ^_^
Similar questions