Math, asked by ananthakrishnanjxian, 3 months ago

hey pls answer this qn ​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:z = \dfrac{ - 1 +  \sqrt{3} i}{2}

We know,

 \boxed{\rm :\longmapsto\: \omega \:  = \dfrac{ - 1 +  \sqrt{3} i}{2} }

So,

\bf\implies \:z = \omega

Further given that,

\rm :\longmapsto\:P = \bigg[ \begin{matrix} {( - z)}^{r} & {z}^{2s}  \\  {z}^{2s} & {z}^{r}  \end{matrix} \bigg]

which can be rewritten as

\rm :\longmapsto\:P = \bigg[ \begin{matrix} {( -\omega )}^{r} & {\omega}^{2s}  \\  {\omega}^{2s} & {\omega}^{r}  \end{matrix} \bigg]

Consider,

\rm :\longmapsto\: {P}^{2}  = \bigg[ \begin{matrix} {( -\omega )}^{r} & {\omega}^{2s}  \\  {\omega}^{2s} & {\omega}^{r}  \end{matrix} \bigg]\bigg[ \begin{matrix} {( -\omega )}^{r} & {\omega}^{2s}  \\  {\omega}^{2s} & {\omega}^{r}  \end{matrix} \bigg]

\rm \:  =  \: \bigg[ \begin{matrix} {( \omega )}^{2r} +  {\omega}^{4s}  & {( - \omega)}^{r} {\omega}^{2s} +  {\omega}^{2s} {\omega}^{r}\\  {( - \omega)}^{r} {\omega}^{2s} +  {\omega}^{2s} {\omega}^{r} & {( \omega )}^{2r} +  {\omega}^{4s}  \end{matrix} \bigg]

\rm \:  =  \: \bigg[ \begin{matrix} {( \omega )}^{2r} +  {\omega}^{4s}  & ({( - \omega)}^{r} +  {\omega}^{r}) {\omega}^{2s}\\  ({( - \omega)}^{r}  +  {\omega}^{r} ){\omega}^{2s} & {( \omega )}^{2r} +  {\omega}^{4s}  \end{matrix} \bigg]

Now, it is given that,

 \red{\rm :\longmapsto\: {P}^{2} =  -  \: I}

Given that, I is an identity matrix of order 2 × 2

So,

\rm :\longmapsto\:I = \bigg[ \begin{matrix}1&0\\ 0&1 \end{matrix} \bigg]

So, on substituting the values, we get

\rm \: \bigg[ \begin{matrix} {( \omega )}^{2r} +  {\omega}^{4s}  & ({( - \omega)}^{r} +  {\omega}^{r}) {\omega}^{2s}\\  ({( - \omega)}^{r}  +  {\omega}^{r} ){\omega}^{2s} & {( \omega )}^{2r} +  {\omega}^{4s}  \end{matrix} \bigg] =  - \bigg[ \begin{matrix}1&0\\ 0&1 \end{matrix} \bigg]

\rm \: \bigg[ \begin{matrix} {( \omega )}^{2r} +  {\omega}^{4s}  & ({( - \omega)}^{r} +  {\omega}^{r}) {\omega}^{2s}\\  ({( - \omega)}^{r}  +  {\omega}^{r} ){\omega}^{2s} & {( \omega )}^{2r} +  {\omega}^{4s}  \end{matrix} \bigg] = \bigg[ \begin{matrix} - 1&0\\ 0& - 1 \end{matrix} \bigg]

Since, it is given that r and s can assume the values from 1, 2, 3.

So, on comparing, we get

\rm :\longmapsto\:{( \omega )}^{2r} +  {\omega}^{4s} =  - 1 -  -  - (1)

and

\rm :\longmapsto\:({( - \omega)}^{r}  +  {\omega}^{r}) {\omega}^{2s} = 0

\bf\implies \:r = 1 \:   \: \: or \:  \:  \: r = 3

It holds when r = 1 or r = 3

Case :- 1

When r = 1

Substituting the value of r in equation (1), we get

\rm :\longmapsto\:{( \omega )}^{2} +  {\omega}^{4s} =  - 1

\rm :\longmapsto\:+  {\omega}^{4s} =  - 1 -  {\omega}^{2}

\rm :\longmapsto\:+  {\omega}^{4s} =  - (1  + {\omega}^{2} )

\rm :\longmapsto\ {\omega}^{4s} =  - ( - {\omega})

\rm :\longmapsto\ {\omega}^{4s} =  {\omega}

can be rewritten as

\rm :\longmapsto\ {\omega}^{3s} \times  {\omega}^{s}  =  {\omega}

\rm :\longmapsto\ 1 \times  {\omega}^{s}  =  {\omega}

\rm :\longmapsto\   {\omega}^{s}  =  {\omega}

\bf\implies \:s = 1

So, one order pair is (1, 1).

Case :- 2

When r = 3

Put the value of r = 3 in equation (1), we get

\rm :\longmapsto\:{( \omega )}^{6} +  {\omega}^{4s} =  - 1

\rm :\longmapsto\:1 +  {\omega}^{4s} =  - 1

\rm :\longmapsto\:{\omega}^{4s} =  - 1 - 1

\rm :\longmapsto\:{\omega}^{3s} \times  {\omega}^{s}  =  - 2

\rm :\longmapsto\:{\omega}^{s}  =  - 2

which is not possible.

So, only one order pair ( 1, 1 ) exist.

Formula used :-

\red{\boxed{ \rm{ {\omega}^{3} = 1}}}

\red{\boxed{ \rm{1 + \omega +  {\omega}^{2} = 0}}}

Similar questions