Math, asked by ance000, 1 year ago

hey,

plz help me,

I will give 25 points...

Attachments:

Answers

Answered by madhura41
139
Hope This Helps u ☺.
Attachments:

madhura41: Welcomr
madhura41: *Welcome
Answered by kapoorshivam821
3
3/4a2+3b2)4(a2-2/3b2) 

Final result :

(a2 + 4b2) • (3a2 - 2b2)

Step by step solution :

Step  1  :

2 Simplify — 3

Equation at the end of step  1  :

3 2 (((—•(a2))+(3•(b2)))•4)•((a2)-(—•b2)) 4 3

Step  2  :

Equation at the end of step  2  :

3 2b2 (((—•(a2))+(3•(b2)))•4)•((a2)-———) 4 3

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Subtracting a fraction from a whole 

Rewrite the whole as a fraction using  3  as the denominator :

a2 a2 • 3 a2 = —— = —————— 1 3

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole 

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 3.2       Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a2 • 3 - (2b2) 3a2 - 2b2 —————————————— = ————————— 3 3

Equation at the end of step  3  :

3 (3a2-2b2) (((—•(a2))+(3•(b2)))•4)•————————— 4 3

Step  4  :

Equation at the end of step  4  :

3 (3a2-2b2) (((—•(a2))+3b2)•4)•————————— 4 3

Step  5  :

3 Simplify — 4

Equation at the end of step  5  :

3 (3a2 - 2b2) (((— • a2) + 3b2) • 4) • ——————————— 4 3

Step  6  :

Equation at the end of step  6  :

3a2 (3a2 - 2b2) ((——— + 3b2) • 4) • ——————————— 4 3

Step  7  :

Rewriting the whole as an Equivalent Fraction :

 7.1   Adding a whole to a fraction 

Rewrite the whole as a fraction using  4  as the denominator :

3b2 3b2 • 4 3b2 = ——— = ——————— 1 4

Adding fractions that have a common denominator :

 7.2       Adding up the two equivalent fractions 

3a2 + 3b2 • 4 3a2 + 12b2 ————————————— = —————————— 4 4

Equation at the end of step  7  :

(3a2 + 12b2) (3a2 - 2b2) (———————————— • 4) • ——————————— 4 3

Step  8  :

Step  9  :

Pulling out like terms :

 9.1     Pull out like factors :

   3a2 + 12b2  =   3 • (a2 + 4b2) 

Equation at the end of step  9  :

(3a2 - 2b2) 3 • (a2 + 4b2) • ——————————— 3

Step  10  :

Trying to factor as a Difference of Squares :

 10.1      Factoring:  3a2-2b2 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 = 
         A2 - B2

Note :  AB = BA is the commutative property of multiplication. 

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  3  is not a square !! 

Ruling : Binomial can not be factored as the
difference of two perfect squares

Final result :

(a2 + 4b2) • (3a2 - 2b2)


hope itzz help u guy
thk gya

kapoorshivam821: thank u ance to mark my answer as brainliest
Similar questions