Math, asked by harjotsinghbhinder13, 1 year ago

hey plz help me!
it's request

Attachments:

Answers

Answered by Anonymous
6

\bf{Given : (Tan\theta + \frac{1}{Cos\theta})^2 + (Tan\theta - \frac{1}{Cos\theta})^2}

\bf{\implies [Tan^2\theta + \frac{1}{Cos^2\theta} + 2Tan\theta(\frac{1}{Cos\theta})] + [Tan^2\theta + \frac{1}{Cos^2\theta} - 2Tan\theta(\frac{1}{Cos\theta})]}

\bf{\implies [Tan^2\theta + \frac{1}{Cos^2\theta}}] + [Tan^2\theta + \frac{1}{Cos^2\theta}]}

\bf{\implies [2Tan^2\theta + \frac{2}{Cos^2\theta}}]

\bf{\implies [\frac{2Sin^2\theta}{Cos^2\theta} + \frac{2}{Cos^2\theta}}]

\bf{\implies [\frac{2Sin^2\theta + 2}{Cos^2\theta}]

\bf{\implies [\frac{2(Sin^2\theta + 1)}{1 - Sin^2\theta}]

Identities used to solve this problem :

(a + b)² = a² + b² + 2ab

✿ (a - b)² = a² + b² - 2ab

\bf{Tan^2\theta = \frac{Sin^2\theta}{Cos^2\theta}}

✿ Cos²θ = 1 - Sin²θ

Similar questions