Hey ^^"
Prove the following identity :


Answers
Answered by
8
Hey



Now,








Now,
Attachments:

Answered by
2
Answer:
△abd∼△ced
= > \frac{ab}{ad} = \frac{ce}{cd}=>
ad
ab
=
cd
ce
= > ce = \frac{ab.cd}{ad}=>ce=
ad
ab.cd
Now,
\sin(x - y) = \frac{ce}{ac}sin(x−y)=
ac
ce
= \frac{ab.cd}{ad.ac}=
ad.ac
ab.cd
= \frac{ab.bd}{ac.cd} - \frac{ab.bc}{ac.cd}=
ac.cd
ab.bd
−
ac.cd
ab.bc
= \sin(x) \cos(y ) - \sin(y) \cos(x) -> (I)=sin(x)cos(y)−sin(y)cos(x)−>(I)
put \: x = 0putx=0
\sin( - y) = - \sin(y)sin(−y)=−sin(y)
put \: y = -yputy=−y
\sin(x + y) =\sin(x) \cos(y ) + \sin(y) \cos(x)sin(x+y)=sin(x)cos(y)+sin(y)cos(x)
put \: x = ( \frac{ \pi }{2}-x) \: in \: I \: to \: get \: the \: second \: resultputx=(
2
π
−x)inI
Similar questions