Math, asked by Yuichiro13, 1 year ago

Hey ^^"

Prove the following identity :

 \sin( \alpha   \pm  \beta )  =  \sin( \alpha )  \cos( \beta )   \pm   \sin( \beta )  \cos( \alpha )

 \cos( \alpha  \pm \beta )  =  \cos( \alpha  )  \cos( \beta )  \mp  \sin( \alpha  )  \sin( \beta )

Answers

Answered by Pikaachu
8
Hey

 \triangle abd \sim \triangle ced

 = > \frac{ab}{ad} = \frac{ce}{cd}

 = > ce = \frac{ab.cd}{ad}

Now,

 \sin(x - y) = \frac{ce}{ac}

 = \frac{ab.cd}{ad.ac}

 = \frac{ab.bd}{ac.cd} - \frac{ab.bc}{ac.cd}

 = \sin(x) \cos(y ) - \sin(y) \cos(x) -> (I)

put \: x = 0

 \sin( - y) = - \sin(y)

put \: y = -y

 \sin(x + y) =\sin(x) \cos(y ) + \sin(y) \cos(x)

put \: x = ( \frac{ \pi }{2}-x) \: in \: I \: to \: get \: the \: second \: result
Attachments:
Answered by Anonymous
2

Answer:

△abd∼△ced

= > \frac{ab}{ad} = \frac{ce}{cd}=>

ad

ab

=

cd

ce

= > ce = \frac{ab.cd}{ad}=>ce=

ad

ab.cd

Now,

\sin(x - y) = \frac{ce}{ac}sin(x−y)=

ac

ce

= \frac{ab.cd}{ad.ac}=

ad.ac

ab.cd

= \frac{ab.bd}{ac.cd} - \frac{ab.bc}{ac.cd}=

ac.cd

ab.bd

ac.cd

ab.bc

= \sin(x) \cos(y ) - \sin(y) \cos(x) -> (I)=sin(x)cos(y)−sin(y)cos(x)−>(I)

put \: x = 0putx=0

\sin( - y) = - \sin(y)sin(−y)=−sin(y)

put \: y = -yputy=−y

\sin(x + y) =\sin(x) \cos(y ) + \sin(y) \cos(x)sin(x+y)=sin(x)cos(y)+sin(y)cos(x)

put \: x = ( \frac{ \pi }{2}-x) \: in \: I \: to \: get \: the \: second \: resultputx=(

2

π

−x)inI

Similar questions