Math, asked by Anonymous, 1 year ago

hey ✌

Q ) In Triangle ABC , angle BAC =90 and AD is perpendicular to BC. Prove that AD^2= BD×DC


☆ Content quality required ☆

✔ CBSE : class 10


■ No spam ■

Answers

Answered by abhi569
9

  \:  \:  \:  \:  \:  \:  \:  \bold{In  \:   \: \:  \triangle \:  ADC , <br />}


 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{<br />By  \:  \: Pythagoras  \:  \: Theorem , }

= > AC² = DC² + AD²


= > AD² = AC² - DC² ------: ( 1 )





  \:  \:  \:  \:  \:  \:  \:   \bold{In \:  \:  \:  \triangle  \: ABD, <br />}


 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{<br />By  \:  \: Pythagoras \:  \:  Theorem , }


= > AB² = BD² + AD²


= > AD² = AB² - BD² -------: ( 2 )





 \:  \:  \:  \:  \:  \:  \:  \:  \bold{In  \:  \:  \:  \triangle \:  ABC, <br />}


BC = BD + DC ----: ( 3 )



 \:  \:  \:  \:  \:  \:  \:  \underline{By \:  \:  Pythagoras \:  \:  Theorem , <br />}



= > BC² = AC² + AB²



Putting the value of BC from ( 3 ) ,



= > ( BD + DC )² = AC² + AB²



By Formula,
( a + b )² = a² + b² + 2ab



= > BD² + DC² + 2{ BC × DC } = AC² + AB²



= > 2{ BD × DC } = AC² + AB² - BD² - DC²



= > 2{ BD × DC } = AC² - DC² + AB² - BD²




Putting the value(s) of [ AC² - DC² ] and [ AB² - BD² ] from ( 1 ) and ( 2 ) respectively,




= > 2{ BD × DC } = AD² + AD²


= > 2{ BD × DC } = 2 AD²


= > BD × DC = AD²





Hence, prove that BD × DC = AD².

abhi569: Welr
abhi569: Welcome*
abhi569: :-)
abhi569: :-)
Answered by anithahimabindu1980
0

happy birthday in advance may God bless you

Similar questions