Math, asked by Ashishkumar098, 1 year ago

Hey !! ❤️

Question :-

If , α ≠ β and a tanα + b tanβ = ( a + b ) tan{( α + β ) / 2}

Then prove that ,

cosα / cosβ = a / b


Thanks!​

Answers

Answered by Swarup1998
87
\underline{\text{Proof :}}

\text{Given,}

\mathrm{a\:tan\alpha+b\:tan\beta=(a+b)\:tan\frac{\alpha+\beta}{2}}

\to \mathrm{a\frac{sin\alpha}{cos\alpha}+b\frac{sin\beta}{cos\beta}=a\frac{sin\frac{\alpha+\beta}{2}}{cos\frac{\alpha+\beta}{2}}+b\frac{sin\frac{\alpha+\beta}{2}}{cos\frac{\alpha+\beta}{2}}}

\to \small{\mathrm{a(\frac{sin\alpha}{cos\alpha}-\frac{sin\frac{\alpha+\beta}{2}}{cos\frac{\alpha+\beta}{2}})+b (\frac{sin\beta}{cos\beta}-\frac{sin\frac{\alpha+\beta}{2}}{cos\frac{\alpha+\beta}{2}})=0}}

\to \tiny{\mathrm{a\frac{sin\alpha\:cos\frac{\alpha+\beta}{2}-cos\alpha\:sin\frac{\alpha+\beta}{2}}{cos\alpha\:cos\frac{\alpha+\beta}{2}}+b\frac{sin\beta\:cos\frac{\alpha+\beta}{2}-cos\beta\:sin\frac{\alpha+\beta}{2}}{cos\beta\:cos\frac{\alpha+\beta}{2}}=0}}

\to \mathrm{a\frac{sin(\alpha-\frac{\alpha+\beta}{2})}{cos\alpha}+b\frac{sin(\beta-\frac{\alpha+\beta}{2})}{cos\beta}=0}

\to \mathrm{a\frac{sin\frac{\alpha-\beta}{2}}{cos\alpha}+b\frac{sin\frac{\beta-\alpha}{2}}{cos\beta}=0}

\to \mathrm{a\frac{sin\frac{\alpha-\beta}{2}}{cos\alpha}-b\frac{sin\frac{\alpha-\beta}{2}}{cos\beta}=0}

\to \mathrm{\frac{a}{cos\alpha}-\frac{b}{cos\beta}=0}

\to \mathrm{\frac{a}{cos\alpha}=\frac{b}{cos\beta}}

\to \boxed{\mathrm{\frac{cos\alpha}{cos\beta}=\frac{a}{b}}}

\text{Hence, proved.}

avani040: Ummmm... uh ohk .. well I cannot get it .. lol... i am in 8th
Ashishkumar098: oh got it , thanks bhai ^_^
Swarup1998: :)
Swarup1998: Thanks for the Brainliest! ☺
Ashishkumar098: areee bhaiya ,, hehe ^_^
Anonymous: nice bro @swarup1998!
Anonymous: he did perfectly
Anonymous: :)
Anonymous: suberb answer
Answered by Anonymous
25

Solution :

\mathsf{atan\alpha+btan\beta=(a+b)tan(\dfrac{\alpha+\beta}{2})}\\\\\implies \mathsf{a\dfrac{sin\alpha}{cos\alpha}+b\dfrac{sin\alpha}{cos\alpha}=a\dfrac{sin\dfrac{\alpha+\beta}{2}}{cos\dfrac{\alpha+\beta}{2}}+b\dfrac{sin\dfrac{\alpha+\beta}{2}}{cos\dfrac{\alpha+\beta}{2}}}\\\\\implies \small{\mathsf{a(\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\dfrac{\alpha+\beta}{2}}{cos\dfrac{\alpha+\beta}{2}})+b (\dfrac{sin\beta}{cos\beta}-\dfrac{sin\dfrac{\alpha+\beta}{2}}{cos\dfrac{\alpha+\beta}{2}})=0}}

\implies \mathsf{a\dfrac{sin\alpha\:cos\dfrac{\alpha+\beta}{2}-cos\alpha\:sin\dfrac{\alpha+\beta}{2}}{cos\alpha\:cos\dfrac{\alpha+\beta}{2}}+b\dfrac{sin\beta\:cos\dfrac{\alpha+\beta}{2}-cos\beta\:sin\dfrac{\alpha+\beta}{2}}{cos\beta\:cos\dfrac{\alpha+\beta}{2}}=0}

\implies \mathsf{\dfrac{1}{cos\dfrac{\alpha+\beta}{2}}(a\dfrac{sin\alpha\:cos\dfrac{\alpha+\beta}{2}-cos\alpha\:sin\dfrac{\alpha+\beta}{2}}{cos\alpha}+b\dfrac{sin\beta\:cos\dfrac{\alpha+\beta}{2}-cos\beta\:sin\dfrac{\alpha+\beta}{2}}{cos\beta})=0}\\\\\implies \mathsf{a\dfrac{sin(\alpha-\dfrac{\alpha+\beta}{2})}{cos\alpha}+b\dfrac{sin(\beta-\dfrac{\alpha+\beta}{2})}{cos\beta}=0}

\implies \mathsf{a\dfrac{sin(\dfrac{2\alpha-\alpha-\beta}{2})}{cos\alpha}+b\dfrac{sin(\dfrac{2\beta-\alpha-\beta}{2})}{cos\beta}=0}\\\\\implies \mathsf{a\dfrac{sin(\dfrac{\alpha-\beta}{2})}{cos\alpha}-b\dfrac{sin(\dfrac{\alpha-\beta}{2})}{cos\beta}=0}\\\\\implies \mathsf{sin(\dfrac{\alpha-\beta}{2})(\dfrac{a}{cos\alpha}-\dfrac{b}{cos\beta})=0}

\implies \mathsf{\dfrac{a}{cos\alpha}-\dfrac{b}{cos\beta}=0}\\\\\implies \mathsf{\dfrac{a}{cos\alpha}=\dfrac{b}{cos\beta}}\\\\\implies \mathsf{\dfrac{cos\alpha}{cos\beta}=\dfrac{a}{b}}

Step-by-step explanation:

We start by using the formula :

tan A = sin A / cos A .

Then transpose the values and go on taking commons until we are proving the statement .

Another formula used in the above proof is :

sin ( X - Y ) = sin X cos Y - cos X sin Y .


Anonymous: superb bro !!!
Ashishkumar098: Thanks ! ^_^
Anonymous: i told to jishnumukherjee's answer XD
Anonymous: anyway wlcm :)
Ashishkumar098: I also said to @jishnumukherjee to answering my question ! :)
Anonymous: very nice
Similar questions