Math, asked by trisha10433, 1 year ago

hey
......



solve
it


no spam
no wrong ans

Attachments:

Answers

Answered by ShuchiRecites
94

Proof

L.H.S → (sin∅ - cosec∅)(cos∅ - sec∅)

L.H.S → (sin∅ - 1/sin∅)(cos∅ - 1/cos∅)

L.H.S → (sin²∅ - 1)/sin∅ × (cos²∅ - 1)/cos∅

L.H.S →(1 - cos²∅ - 1)/sin∅ × (1 - sin²∅ - 1)/cos∅

L.H.S →- cos²∅/sin∅ × (- sin²∅)/cos∅

L.H.S → cos∅ × sin∅

R.H.S → 1/(tan∅ + cot∅)

R.H.S → 1/(sin∅/cos∅ + cos∅/sin∅)

R.H.S → 1/(sin²∅ + cos²∅)/sin∅ cos∅

R.H.S → sin∅ × cos∅

L.HS = R.H.S

______________________________

Remember

  • cos²∅ = 1 - sin²∅
  • sin²∅ = 1 - cos²∅
  • tan∅ = sin∅/cos∅
  • cot∅ = cos∅/sin∅
  • sin²∅ + cos²∅ = 1
Answered by Anonymous
71

Step-by-step explanation:

Refer to attachment.............

Attachments:
Similar questions