hey
......
solve
it
no spam
no wrong ans
Attachments:
Answers
Answered by
94
Proof
L.H.S → (sin∅ - cosec∅)(cos∅ - sec∅)
L.H.S → (sin∅ - 1/sin∅)(cos∅ - 1/cos∅)
L.H.S → (sin²∅ - 1)/sin∅ × (cos²∅ - 1)/cos∅
L.H.S →(1 - cos²∅ - 1)/sin∅ × (1 - sin²∅ - 1)/cos∅
L.H.S →- cos²∅/sin∅ × (- sin²∅)/cos∅
L.H.S → cos∅ × sin∅
R.H.S → 1/(tan∅ + cot∅)
R.H.S → 1/(sin∅/cos∅ + cos∅/sin∅)
R.H.S → 1/(sin²∅ + cos²∅)/sin∅ cos∅
R.H.S → sin∅ × cos∅
L.HS = R.H.S
______________________________
Remember
- cos²∅ = 1 - sin²∅
- sin²∅ = 1 - cos²∅
- tan∅ = sin∅/cos∅
- cot∅ = cos∅/sin∅
- sin²∅ + cos²∅ = 1
Answered by
71
Step-by-step explanation:
Refer to attachment.............
Attachments:
Similar questions
Math,
6 months ago
English,
6 months ago
Math,
6 months ago
CBSE BOARD X,
1 year ago
Science,
1 year ago