Hey...SOLVE THIS.....
Answers
d( √sinx)/ dx
First differentiate assuming sinx as x
So its 1/2√sinx
Now as its sin x So differentiate sinx now which is cosx
cosx /2√sinx
Now from first principle
y= √sinx
lim h->0. √sin( x+ h) -√ sinx)/ h
√sin ( x+ h)/h - √sinx/h
√( sinx cos h + cos x sinh)/ h -( √(sinx/h) × 1/√h
√( sinx cosh/h + ( cos x sinh )/h) × 1/√h
- √( sinx/h) × 1/√h
√( sinx/h) + cosx ) - √( sinx/h)))/√h
√( sin x/h + cos x) -√( sinx /h)) × √( sinx/h + cos x ) + √( sinx/h)) /√h( √sinx /h + cos x - √sinx /h))
= sinx/h + cos x - sinx /h )/ √( sinx/h + cos x) + √( sinx /h ) √h
= cos x)/ √h ( (√( sin x/h + cos x) + √( sin x/h))
= cos x)/√ ( sinx + cos x h ) + √sinx)
= cos x)/ √( sinx ) + √sinx
= cos x)/ 2√sinx
d( √sinx)/ dx
First differentiate assuming sinx as x
So its 1/2√sinx
Now as its sin x So differentiate sinx now which is cosx
cosx /2√sinx
Now from first principle
y= √sinx
lim h->0. √sin( x+ h) -√ sinx)/ h
√sin ( x+ h)/h - √sinx/h
√( sinx cos h + cos x sinh)/ h -( √(sinx/h) × 1/√h
√( sinx cosh/h + ( cos x sinh )/h) × 1/√h
- √( sinx/h) × 1/√h
√( sinx/h) + cosx ) - √( sinx/h)))/√h
√( sin x/h + cos x) -√( sinx /h)) × √( sinx/h + cos x ) + √( sinx/h)) /√h( √sinx /h + cos x - √sinx /h))
= sinx/h + cos x - sinx /h )/ √( sinx/h + cos x) + √( sinx /h ) √h
= cos x)/ √h ( (√( sin x/h + cos x) + √( sin x/h))
= cos x)/√ ( sinx + cos x h ) + √sinx)
= cos x)/ √( sinx ) + √sinx
= cos x)/ 2√sinx