Hey
☺✍✌☺
Attachments:
Answers
Answered by
2
Heya !!
cosA = 2/5 (given)
=> secA = 5/2
Now, 4 + 4tan²A
=> 4 (1+ tan²A)
=> 4sec²A ( 1+ tan²A = sec²A )
=> 4 (5/2)²
=> 4 × ( 25/4 )
=> 25
cosA = 2/5 (given)
=> secA = 5/2
Now, 4 + 4tan²A
=> 4 (1+ tan²A)
=> 4sec²A ( 1+ tan²A = sec²A )
=> 4 (5/2)²
=> 4 × ( 25/4 )
=> 25
Answered by
1
Cos A = 2/5
base = 2
Hypotenuse = 5
Using Pyth theorem perpendicular
= √ 5² - 2²
= √25 - 4
= √21
(Tan A = Perpendicular / base)
Tan A = √21/2
4+4 Tan²A = 4+4×(√21/2)²
= 4 + 4× 21/4
= 4 + 21
= 25
Glad to help you!
base = 2
Hypotenuse = 5
Using Pyth theorem perpendicular
= √ 5² - 2²
= √25 - 4
= √21
(Tan A = Perpendicular / base)
Tan A = √21/2
4+4 Tan²A = 4+4×(√21/2)²
= 4 + 4× 21/4
= 4 + 21
= 25
Glad to help you!
Similar questions