hey
![\sqrt{x} + y = 7 \\ x + \sqrt{y} = 11 \sqrt{x} + y = 7 \\ x + \sqrt{y} = 11](https://tex.z-dn.net/?f=+%5Csqrt%7Bx%7D++%2B+y+%3D+7+%5C%5C+x+%2B++%5Csqrt%7By%7D++%3D+11)
find the values of x and y
Answers
Answered by
1
x+√y=7
√x+y=11
from eq 1...
√y=7-x
y=(7-x)^2
from eq 2...
√x=11-y
substitute (7-x)^2 for y
√x=11-(7-x)^2
square both sides
x=121-22(7-x)^2+(7-x)^4
(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)
x^4-28x^3+294x^2-1372x+2401
x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401
0=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401
x^4-28x^3+272x^2-1065x+1444=0
from the rational root theorem, possible roots are factors of 1444
4 is a factor of 1444 and a root of the equation...
256-1792+4352-4260+1444=0
-1536+4352-4260+1444=0
2816-4260+1444=0
-1444+1444=0
0=0
x=4
x+√y=7
4+√y=7
√y=7-4
√y=3
square both sides
y=9
x=4 and y=9
Hope it helps u..
√x+y=11
from eq 1...
√y=7-x
y=(7-x)^2
from eq 2...
√x=11-y
substitute (7-x)^2 for y
√x=11-(7-x)^2
square both sides
x=121-22(7-x)^2+(7-x)^4
(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)
x^4-28x^3+294x^2-1372x+2401
x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401
0=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401
x^4-28x^3+272x^2-1065x+1444=0
from the rational root theorem, possible roots are factors of 1444
4 is a factor of 1444 and a root of the equation...
256-1792+4352-4260+1444=0
-1536+4352-4260+1444=0
2816-4260+1444=0
-1444+1444=0
0=0
x=4
x+√y=7
4+√y=7
√y=7-4
√y=3
square both sides
y=9
x=4 and y=9
Hope it helps u..
bhaveshvk18:
any other way...
Answered by
12
Answer:
x = 9 and b = 4
Step-by-step explanation:
Given that-
Let us consider, √x = a and √y = b,
Multiplying equation (i) by a² and equation (ii) by a, we get -
And,
Subtracting equation (iii) from (iv)-
By using hit and trial method, we will find the value of b.
Let b = 1,2...
When b = 2,
Now, find x and y:
Hence, the value of x is 9 and y is 4.
Similar questions